Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
6-Cyano-7-aminoquinoline (6CN-7AQ) and 3-cyano-7-aminoquinoline (3CN-7AQ) were synthesized and found to exhibit intense emission with quantum yield as high as 63 % and 85 %, respectively, in water. Conversely, their derivatives 6-cyano-7-azidoquinoline (6CN-7N Q) and 3-cyano-7-azidoquinoline (3CN-7N Q) show virtually no emission, which makes them suitable to be used as recognition agents in azide reactions based on fluorescence recovery. Moreover, conjugation of 6CN-7AQ with a hydrophobic biomembrane-penetration peptide PFVYLI renders a nearly non-emissive 6CN-7AQ-PFVYLI composite, which can be digested by proteinase K, recovering the highly emissive 6CN-7AQ with ∼200-fold enhancement. The result provides an effective early confirmation for RT-qPCR in viral detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202100413 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!