A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fang evolution in venomous snakes: Adaptation of 3D tooth shape to the biomechanical properties of their prey. | LitMetric

Venomous snakes are among the world's most specialized predators. During feeding, they use fangs to penetrate the body tissues of their prey, but the success of this penetration depends on the shape of these highly specialized teeth. Here, we examined the evolution of fang shape in a wide range of snakes using 3D geometric morphometrics (3DGM) and cross-sectional tooth sharpness measurements. We investigated the relationship of these variables with six diet categories based on the prey's biomechanical properties, and tested for evolutionary convergence using two methods. Our results show that slender elongate fangs with sharp tips are used by snakes that target soft-skinned prey (e.g., mammals), whereas fangs become more robust and blunter as the target's skin becomes scaly (e.g., fish and reptiles) and eventually hard-shelled (e.g., crustaceans), both with and without correction for evolutionary allometry. Convergence in fang shape is present, indicating that fangs of snakes with the same diet are more similar than those of closely related species with different diets. Establishing the relationship between fang morphology and diet helps to explain how snakes became adapted to different lifestyles, while also providing a proxy to infer diet in lesser known species or extinct snakes from the fossil record.

Download full-text PDF

Source
http://dx.doi.org/10.1111/evo.14239DOI Listing

Publication Analysis

Top Keywords

venomous snakes
8
biomechanical properties
8
fang shape
8
snakes
7
fang
4
fang evolution
4
evolution venomous
4
snakes adaptation
4
adaptation tooth
4
shape
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!