SChLAP1 is recently reported as a key oncogenic long non-coding RNA in human cancer. However, whether SChLAP1 functions in non-small cell lung cancer (NSCLC) and its specific potential regulatory mechanism remain unexplored. In this study, we found that depletion of SChLAP1 significantly inhibited NSCLC cell proliferation, migration and invasion , and retarded tumour growth and lung metastasis . SChLAP1 facilitated NSCLC cell immune evasion against CD8 T cells through PD-1/PD-L1 immune checkpoint. In detail, SChLAP1 was able to directly interact with AUF1, antagonizing the binding between AUF1 and PDL1 mRNA 3'-UTR, resulting in increasing PDL1 mRNA stability and expression, thereby repressing CD8 T cell function. Consistently, anti-PD-1/PD-L1 treatment evidently blocked the enhanced cell proliferation and invasion caused by SChLAP1 overexpression. Importantly, SChLAP1 was significantly upregulated in NSCLC cell lines, serum and tissues, which was identified as an excellent indicator for the diagnosis and prognosis of NSCLC. In conclusion, our data for the first time uncover that SChLAP1 functions an oncogene in NSCLC by promoting cancer cell immune evasion regulating the AUF1/PDL1 axis, targeting of SChLAP1 may be a potential approach to improve the efficacy of immunotherapy in NSCLC patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08916934.2021.1913582 | DOI Listing |
PLoS One
January 2025
Department of Computer Science and Engineering, University of Chittagong, Chattogram, Bangladesh.
Rice blast, caused by Magnaporthe oryzae, is one of the most destructive fungal diseases in rice, resulting in major economic losses worldwide. Genetic and genomic studies have identified key genes and proteins, such as AvrPik variants and MAX proteins, that are crucial for the pathogen's virulence. These effector proteins interact with specific alleles of the Pik gene family on rice chromosome 11, modulating the host's immune response.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK.
After four decades of intensive research, traditional vaccination strategies for HIV-1 remain ineffective due to HIV-1's extraordinary genetic diversity and complex immune evasion mechanisms. Cytomegaloviruses (CMV) have emerged as a novel type of vaccine vector with unique advantages due to CMV persistence and immunogenicity. Rhesus macaques vaccinated with molecular clone 68-1 of RhCMV (RhCMV68-1) engineered to express simian immunodeficiency virus (SIV) immunogens elicited an unconventional major histocompatibility complex class Ib allele E (MHC-E)-restricted CD8 T-cell response, which consistently protected over half of the animals against a highly pathogenic SIV challenge.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Microbiology and Virology Unit, Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, Italy.
The COVID-19 pandemic, driven by the rapid evolution of the SARS-CoV-2 virus, presents ongoing challenges to global public health. SARS-CoV-2 is characterized by rapidly evolving mutations, especially in (but not limited to) the spike protein, complicating predictions about its evolutionary trajectory. These mutations have significantly affected transmissibility, immune evasion, and vaccine efficacy, leading to multiple pandemic waves with over half a billion cases and seven million deaths globally.
View Article and Find Full Text PDFCurr Oncol
December 2024
Gastrointestinal Unit, The Royal Marsden Hospital, London SW3 6JJ, UK.
Biliary tract cancers (BTC) are a highly heterogeneous group of cancers at the genomic, epigenetic and molecular levels. The vast majority of patients initially present at an advanced (unresectable) disease stage due to a lack of symptoms and an aggressive tumour biology. Chemotherapy has been the mainstay of treatment in patients with advanced BTC but the survival outcomes and prognosis remain poor.
View Article and Find Full Text PDFCells
January 2025
College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar.
Ubiquitination is cells' second most abundant posttranslational protein modification after phosphorylation. The ubiquitin-proteasome system (UPS) is critical in maintaining essential life processes such as cell cycle control, DNA damage repair, and apoptosis. Mutations in ubiquitination pathway genes are strongly linked to the development and spread of multiple cancers since several of the UPS family members possess oncogenic or tumor suppressor activities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!