Hydrothermal Synthesis of Zinc-Doped Silica Nanospheres Simultaneously Featuring Stable Fluorescence and Long-Lived Room-Temperature Phosphorescence.

Angew Chem Int Ed Engl

Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China.

Published: July 2021

Fluorescence and phosphorescence are known as two kinds of fundamental optical signals, which have been used for myriad applications. To date, simultaneous activation of stable fluorescence and long-lived room-temperature phosphorescence (RTP) emission in the aqueous phase remains a big challenge. We prepare zinc-doped silica nanospheres (Zn@SiNSs) with fluorescence and RTP properties using a facile hydrothermal synthetic strategy. For the as-prepared Zn@SiNSs, the recombination of electrons and holes in defects and defect-stabilized excitons derived from oxygen vacancy/C=N bonds lead to the production of stable fluorescence and long-lived RTP (emission lasting for ≈9 s, quantum yield (QY): ≈33.6 %, RTP lifetime: ≈236 ms). The internal Si-O bonded networks and hydrophilic surface in Zn@SiNSs can reduce nonradiative decay to form self-protective RTP, and also provide high water solubility, excellent pH- and photostability.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202103200DOI Listing

Publication Analysis

Top Keywords

stable fluorescence
12
fluorescence long-lived
12
zinc-doped silica
8
silica nanospheres
8
long-lived room-temperature
8
room-temperature phosphorescence
8
rtp emission
8
fluorescence
5
rtp
5
hydrothermal synthesis
4

Similar Publications

Proteins can be rapidly prototyped with cell-free expression (CFE) but in most cases there is a lack of probes or assays to measure their function directly in the cell lysate, thereby limiting the throughput of these screens. Increased throughput is needed to build standardized, sequence to function data sets to feed machine learning guided protein optimization. Herein, we describe the use of fluorescent single-walled carbon nanotubes (SWCNT) as effective probes for measuring protease activity directly in cell-free lysate.

View Article and Find Full Text PDF

Unlabelled: Caliciviruses are significant agricultural and human pathogens that are poorly understood due to the dearth of molecular tools, including reporter systems. We report the development of a stable, faithful, and robust luciferase-based reporter system for a model calicivirus, murine norovirus (MNoV). Genetic insertion of a HiBiT tag, an 11 amino acid fragment of nanolucifersase, at the junction of the nonstructural proteins NS4 and NS5 yields infectious virus.

View Article and Find Full Text PDF

Zebrafish models of genetic epilepsy benefit from the ability to assess disease-relevant knock-out alleles with numerous tools, including genetically encoded calcium indicators (GECIs) and hypopigmentation alleles to improve visualization. However, there may be unintended effects of these manipulations on the phenotypes under investigation. There is also debate regarding the use of stable loss-of-function (LoF) alleles in zebrafish, due to genetic compensation (GC).

View Article and Find Full Text PDF

The cellular uptake routes of peptides and proteins are complex and diverse, often handicapping therapeutic success. Understanding their mechanisms of internalization requires chemical derivatization with approaches that are compatible with wash-free and real-time imaging. In this work, we developed a new late-stage labeling strategy for unprotected peptides and proteins, which retains their biological activity while enabling live-cell imaging of uptake and intracellular trafficking.

View Article and Find Full Text PDF

This research focuses on the selective detection of Hg2+ ions using hybrid nanosensors composed of rhodamine building blocks linked to polyamine units of varying chain lengths to produce Rho1-Rho4, which were subsequently conjugated with thioctic acid (RT1-RT4) and attached to the surface of gold nanoparticles to create hybrid nanosensors (GRT1-GRT4) designed for detecting heavy metals. The chemical structures, purity, morphology, and chemical composition were characterized through XRD, NMR, TEM, ATR-FTIR, and mass spectrometry. These hybrid nanosensors demonstrated excellent selectivity and sensitivity in colorimetric and fluorescence responses towards Hg2+, outperforming other metal ions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!