This study aimed to evaluate the feeding choice, dry matter (DM) intake, and milk production of dairy cows that strip grazed on a mixed perennial species pasture receiving different supplementation strategies. The treatments were without supplementation (WS) or with supplementation of either corn silage (CS) or a total mixed ration (TMR) based on CS and concentrates, in a subtropical area. The supplements were provided ad libitum after the afternoon milking. Twelve Holstein × Jersey cows in mid-lactation (133 ± 43 days in milk) were divided into six groups (two cows/group) and distributed in accordance with a replicated 3 × 3 Latin square design, with three 21 day periods (15 adaptation days and 6 evaluation days). The total DM intake, milk production, milk fat, and milk protein production were greater in the TMR treatment than in the WS and CS treatments and were similar between the WS and CS treatments. The herbage DM intake and proportion of time spent grazing were greater in the CS treatment than in the TMR treatment. CS supplementation did not affect the total DM intake or milk production/cow, whereas TMR supplementation greatly improved the total DM intake and milk production of the dairy cows grazing on mixed perennial species.

Download full-text PDF

Source
http://dx.doi.org/10.1111/asj.13558DOI Listing

Publication Analysis

Top Keywords

intake milk
20
milk production
16
dairy cows
12
total intake
12
dry matter
8
matter intake
8
milk
8
corn silage
8
silage total
8
total mixed
8

Similar Publications

Background: The Kasai procedure (KPE) is an important treatment for biliary atresia (BA), the most common cause of neonatal obstructive jaundice.

Aim: To investigate the efficacy of robotic-assisted Kasai portoenterostomy (RAKPE) in patients with BA.

Methods: Clinical data of 10 patients with BA who underwent RAKPE at the Seventh Medical Center of the People's Liberation Army General Hospital between December 2018 and December 2021 were retrospectively analyzed.

View Article and Find Full Text PDF

CCN3: lactational bone booster.

Cell Biosci

December 2024

USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, USA.

Mammalian reproduction requires that nursing mothers transfer large amounts of calcium to their offspring through milk. Meeting this demand requires the activation of a brain-breast-bone circuit during lactation that coordinates changes in systemic hormones, dietary calcium intake, skeletal turnover, and calcium transport into milk. Classically, increased bone resorption via increased parathyroid hormone-related protein and low estrogen levels is the main source of calcium for milk production during lactation.

View Article and Find Full Text PDF

Oral intake of degalactosylated whey protein increases peripheral blood telomere length in young and aged mice.

Sci Rep

December 2024

Department of Endocrinology, Metabolism, and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, 612-8555, Japan.

In order to elucidate novel actions of degalactosylated whey protein (D-WP) in comparison with intact whey protein (WP), the effects of oral intake of D-WP on peripheral blood telomere length and telomerase were examined in young and aged mice. In young mice, peripheral blood telomere length was significantly elongated following oral intake of D-WP for 4 weeks. mRNA expression of both telomerase reverse transcriptase (TERT) and telomerase RNA component (TERC) was significantly increased in the peripheral blood following oral intake of D-WP for 4 weeks.

View Article and Find Full Text PDF

Genetic selection for growth rate has often been related with potential negative effects on various reproductive traits across different species. Using rabbit as a model, this study has evaluated for the first time how genetic selection for growth rate has affected feed efficiency, resource allocation, blood traits, reproductive performance and survival during five reproductive cycles in rabbit does. To this end, we used 88 reproductive rabbit females from two vitrified and rederived populations of the same paternal line, differing only in 18 generations of genetic selection for growth rate (n = 44 for R19V and n = 44 for RV37V).

View Article and Find Full Text PDF

Role of Milk Intake in Modulating Serum Lipid Profiles and Gut Metabolites.

Metabolites

December 2024

Guangxi Zhuang Autonomous Region Buffalo Milk Quality and Safety Control Technology Engineering Research Center, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China.

Background/objectives: Milk is one of the main sources of nutrition in people's daily diet, but the fat in milk raises health concerns in consumers. Here, we aimed to elucidate the impact of Buffalo milk and Holstein cow milk consumption on blood lipid health through metabolomics analysis.

Methods: Golden hamsters were administered Murrah Buffalo milk (BM) or Holstein cow milk (HM), and the body weight and serum lipid indicators were tested and recorded.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!