Rapid tests for active SARS-CoV-2 infections rely on reverse transcription polymerase chain reaction (RT-PCR). RT-PCR uses reverse transcription of RNA into complementary DNA (cDNA) and amplification of specific DNA (primer and probe) targets using polymerase chain reaction (PCR). The technology makes rapid and specific identification of the virus possible based on sequence homology of nucleic acid sequence and is much faster than tissue culture or animal cell models. However the technique can lose sensitivity over time as the virus evolves and the target sequences diverge from the selective primer sequences. Different primer sequences have been adopted in different geographic regions. As we rely on these existing RT-PCR primers to track and manage the spread of the Coronavirus, it is imperative to understand how SARS-CoV-2 mutations, over time and geographically, diverge from existing primers used today. In this study, we analyze the performance of the SARS-CoV-2 primers in use today by measuring the number of mismatches between primer sequence and genome targets over time and spatially. We find that there is a growing number of mismatches, an increase by 2% per month, as well as a high specificity of virus based on geographic location.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8076216PMC
http://dx.doi.org/10.1038/s41598-021-88532-wDOI Listing

Publication Analysis

Top Keywords

rt-pcr primers
8
reverse transcription
8
polymerase chain
8
chain reaction
8
virus based
8
primer sequences
8
primers today
8
number mismatches
8
analysis forecasting
4
forecasting global
4

Similar Publications

Background: Porcine teschovirus (PTV) is an important enteropathogen, associated with symptoms of polioencephalomyelitis, pneumonia, pericarditis, myocarditis, diarrhea, and reproductive disorders in pigs. Rapid and precise diagnostic methods are essential for managing PTV infections. The study introduced a simple, quick, and visual approach for detecting PTV through the use of RT-RAA coupled with LFD.

View Article and Find Full Text PDF

The accurate quantification of nuclear factor Kappa B p65 (NF-κB p65) is critical for understanding inflammatory mechanisms, especially in HIV-1 infected individuals, where NF-κB p65 contributes to chronic immune activation. Conventional methods such as enzyme-linked immunosorbent assay (ELISA) and western blotting are limited in terms of sensitivity and reproducibility. This study aimed to devise a standardized real-time quantitative polymerase chain reaction (RT-qPCR) assay for NF-κB p65 using specifically designed primers and a probe.

View Article and Find Full Text PDF

Introduction: To assess the susceptibility of epidemic influenza viruses to the four most used neuraminidase inhibitors (NAIs) during the 2023-24 influenza season in Japan, we measured the 50% inhibitory concentration (IC) of oseltamivir, peramivir, zanamivir, and laninamivir in virus isolates from the sample of 100 patients.

Methods: Viral isolation was done using specimens obtained before and after treatment, with the type/subtype determined by RT-PCR using type- and subtype-specific primers. IC values were determined by a neuraminidase inhibition assay using a fluorescent substrate.

View Article and Find Full Text PDF

Objectives: Tinea capitis remains a common fungal infection in children worldwide. Species identification is critical for determining the source of infection and reducing transmission. In conventional methods, macro- and microscopic analysis is time-consuming and results in slow fungal growth or low specificity.

View Article and Find Full Text PDF

Porcine hemagglutinating encephalomyelitis virus (PHEV), porcine pseudorabies virus (PRV), and classical swine fever virus (CSFV) are currently prevalent worldwide and cause similar neurological symptoms in infected pigs. It is very important to establish a detection method that can rapidly and accurately detect and differentiate these three viruses. Targeting the PHEV N gene, PRV gB gene, and CSFV 5' untranslated region (5'UTR), three pairs of specific primers and probes were designed, and a triplex crystal digital reverse transcription-PCR (cdRT-PCR) was developed to detect PHEV, PRV, and CSFV.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!