Altered sleep behavior in a genetic mouse model of impaired fear extinction.

Sci Rep

Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, University of Innsbruck, Innsbruck, Austria.

Published: April 2021

Sleep disturbances are a common complaint of anxiety patients and constitute a hallmark feature of post-traumatic stress disorder (PTSD). Emerging evidence suggests that poor sleep is not only a secondary symptom of anxiety- and trauma-related disorders but represents a risk factor in their development, for example by interfering with emotional memory processing. Fear extinction is a critical mechanism for the attenuation of fearful and traumatic memories and multiple studies suggest that healthy sleep is crucial for the formation of extinction memories. However, fear extinction is often impaired in anxiety- and trauma-related disorders-an endophenotype that is perfectly modelled in the 129S1/SvImJ inbred mouse strain. To investigate whether these mice exhibit altered sleep at baseline that could predispose them towards maladaptive fear processing, we compared their circadian sleep/wake patterns to those of typically extinction-competent C57BL/6 mice. We found significant differences regarding diurnal distribution of sleep and wakefulness, but also sleep architecture, spectral features and sleep spindle events. With regard to sleep disturbances reported by anxiety- and PTSD patients, our findings strengthen the 129S1/SvImJ mouse models' face validity and highlight it as a platform to investigate novel, sleep-focused diagnostic and therapeutic strategies. Whether the identified alterations causally contribute to its pathological anxiety/PTSD-like phenotype will, however, have to be addressed in future studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8076259PMC
http://dx.doi.org/10.1038/s41598-021-88475-2DOI Listing

Publication Analysis

Top Keywords

fear extinction
12
altered sleep
8
sleep
8
sleep disturbances
8
anxiety- trauma-related
8
sleep behavior
4
behavior genetic
4
genetic mouse
4
mouse model
4
model impaired
4

Similar Publications

Excitatory synapses and the actin-rich dendritic spines on which they reside are indispensable for information processing and storage in the brain. In the adult hippocampus, excitatory synapses must balance plasticity and stability to support learning and memory. However, the mechanisms governing this balance remain poorly understood.

View Article and Find Full Text PDF

Presenting unpaired unconditional stimuli (US) during extinction training reduces the renewal of conditional fear due to context change. The present study investigated whether this reduced return of fear is specific to the aversive US presented during acquisition or can also be observed after extinction with unpaired presentations of another aversive or of a non-aversive US. Using an ABA renewal paradigm that trained extinction in a context different from that of the acquisition, renewal and re-acquisition test phases, participants received five unpaired presentations of either the aversive US used during acquisition (Group Aversive-Same), an aversive US not presented during acquisition (Group Aversive-Different) or a non-aversive US (Group Non-aversive) during extinction training.

View Article and Find Full Text PDF

Perineuronal nets (PNNs) are specialized components of the extracellular matrix that play a critical role in learning and memory. In a Pavlovian fear conditioning paradigm, degradation of PNNs affects the formation and storage of fear memories. This study examined the impact of adolescent intermittent ethanol (AIE) exposure by vapor inhalation on the expression of PNNs in the adult rat prelimbic (PrL) and infralimbic (IfL) subregions of the medial prefrontal cortex.

View Article and Find Full Text PDF

Fear learning processes are believed to play a crucial role in the development and maintenance of anxiety and stress-related disorders. To integrate results across different studies, we conducted a systematic meta-analysis following PRISMA guidelines to examine differences in fear conditioning during fear acquisition, extinction, and extinction recall between individuals with anxiety-related or stress-related disorders and healthy participants. This analysis updates the work of Duits et al.

View Article and Find Full Text PDF

We considered predator-prey models which incorporated both an Allee effect and a new fear factor effect together, and where the predator predated the prey with a Holling type I functional response. We started off with a two-dimensional model where we found possible equilibria and examined their stabilities. By using the predator mortality rate as the bifurcation parameter, the model exhibited Hopf-bifurcation for the coexistence equilibrium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!