Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. Currently, recent risk stratification has only focused on liver function and tumor characteristics. Thus, the purpose of this study was to develop a prognostic model based on genes involved in aerobic respiration. Matched tumor and normal tissues from TCGA and ICGC cohorts were analyzed to identify 15 overlapping differential expressed genes. Cox univariate analysis of the 15 genes in the TCGA cohort revealed they were all associated with disease-specific survival (DSS) in HCC patients. Using LASSO estimation and the optimal value for penalization coefficient lambda 12 genes were selected for the prognostic model, and then HCC patients in the TCGA cohort were dichotomized into low-risk and high-risk groups. Univariate and multivariate Cox analysis demonstrated patients in low-risk group had better survival. Validation of the risk score model with the ICGC cohort produces results consistent with those of the TCGA cohort. In conclusion, this study developed and validated a prognostic model of HCC through a comprehensive analysis of genes involved in aerobic respiration. This model may help develop personalized treatments for patients with HCC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8148449 | PMC |
http://dx.doi.org/10.18632/aging.203021 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!