Background: A nonsynonymous single nucleotide polymorphism in the neuropeptide S receptor 1 (NPSR1) gene (rs324981) results in isoleucine-to-asparagine substitution at amino acid 107. In humans, the ancestral variant (NPSR1 I107) is associated with increased anxiety sensitivity and risk of panic disorder, while the human-specific variant (NPSR1 N107) is considered protective against excessive anxiety. In rodents, neurobiological constituents of the NPS system have been analyzed in detail and their anxiolytic-like effects have been endorsed. However, their implication for anxiety and related disorders in humans remains unclear, as rodents carry only the ancestral NPSR1 I107 variant.
Methods: We hypothesized that phenotypic correlates of NPSR1 variants manifest in fear-related circuits in the amygdala. We used CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/Cas9)-mediated gene editing to generate a "humanized" mouse strain, in which individuals express either NPSR1 I107 or NPSR1 N107.
Results: Stimulation of NPSR1 evoked excitatory responses in principal neurons of the anterior basal amygdala with significant differences in magnitude between genotypes, resulting in synaptic disinhibition of putative extinction neurons in the posterior basal amygdala in mice expressing the human-specific hypofunctional N107 but not the ancestral I107 variant. N107 mice displayed improved extinction of conditioned fear, which was phenocopied after pharmacological antagonism of NPSR1 in the anterior basal amygdala of I107 mice. Differences in fear extinction between male and female mice were related to an interaction of Npsr1 genotype and salience of fear training.
Conclusions: The NPS system regulates extinction circuits in the amygdala depending on the Npsr1 genotype, contributing to sex-specific differences in fear extinction and high anxiety sensitivity of individuals bearing the ancestral NPSR1 I107 variant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopsych.2021.02.967 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!