Intracranial vessel wall imaging (IVWI) is an advanced MR imaging technique that allows for direct visualization of the walls of intracranial blood vessels and detection of subtle pathologic vessel wall changes before they become apparent on conventional luminal imaging. When performed correctly, IVWI can increase diagnostic confidence, aid in the differentiation of intracranial vasculopathies, and assist in patient risk stratification and prognostication. This review covers the essential technical underpinnings of IVWI and presents emerging clinical research highlighting its utility for the evaluation of multiple intracranial vascular pathologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nic.2021.01.005 | DOI Listing |
Cardiovasc Eng Technol
January 2025
Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 1-3, Budapest, 1111, Hungary.
Purpose: The initiation of intracranial aneurysms has long been studied, mainly by the evaluation of the wall shear stress field. However, the debate about the emergence of hemodynamic stimuli still persists. This paper builds on our previous hypothesis that secondary flows play an important role in the formation cascade by examining the relationship between flow physics and vessel geometry.
View Article and Find Full Text PDFInnovations (Phila)
December 2024
Department of Neurosciences and Rehabilitation, Cardiac Surgery Unit, University of Ferrara, Italy.
Objective: Both the en bloc island technique and the branched graft technique (BGT) present advantages but also limitations in aortic arch surgery. Here is the first presentation of an innovative prosthesis for aortic arch replacement, conceived to overcome the disadvantages of both techniques.
Methods: The novel ISLAND graft is a tubular Dacron or hybrid prosthesis with an additional extended Dacron graft ("bubble") on the superior aspect, for en bloc island graft anastomosis.
Background: Atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of mortality in the western world despite the success of lipid lowering therapies, highlighting the need for novel lipid-independent therapeutic strategies. Genome-wide association studies (GWAS) have identified numerous genes associated with ASCVD that function in the vessel wall, suggesting that vascular cells mediate ASCVD, and that the genes and pathways essential for this vascular cell function may be novel therapeutic targets for the treatment of ASCVD. Furthermore, some of these implicated genes appear to function in the adventitial layer of the vasculature, suggesting these cells are able to potentiate ASCVD.
View Article and Find Full Text PDFRadiol Case Rep
March 2025
Maimonides Medical Center, Brooklyn, NY, USA.
Thoracic aortic pseudoaneurysms are a rare but serious complication of infectious processes, often resulting from mycotic (infectious) aneurysms, occurring when the vessel wall is compromised by an infection, leading to the formation of a pseudoaneurysm [1]. Mycotic aneurysms typically result from bacteremia or fungemia, with common sources being infective endocarditis or other systemic infections. Tuberculosis, though a common infectious disease worldwide, is an unusual cause of aortic pseudoaneurysm formation.
View Article and Find Full Text PDFRev Cardiovasc Med
January 2025
Cardiac Surgery, University of Cincinnati Medical Center, Cincinnati, OH 45202, USA.
Background: The fluorescent dye indocyanine green (ICG) has been used to identify anatomical structures intraoperatively in coronary artery bypass grafting (CABG). This study aimed to evaluate the feasibility of using ICG to assess graft patency and territorial distribution of myocardial reperfusion during CABG.
Methods: Porcine arrested hearts (n = 18) were used to evaluate territorial distribution of native coronary arteries and of a coronary bypass constructed with porcine saphenous vein graft (SVG) using ICG.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!