Background: The interactions between nanoparticles and the biological environment have long been studied, with toxicological assays being the most common experimental route. In parallel, recent growing evidence has brought into light the important role that cell mechanics play in numerous cell biological processes. However, despite the prevalence of nanotechnology applications in biology, and in particular the increased use of magnetic nanoparticles for cell therapy and imaging, the impact of nanoparticles on the cells' mechanical properties remains poorly understood.
Results: Here, we used a parallel plate rheometer to measure the impact of magnetic nanoparticles on the viscoelastic modulus G*(f) of individual cells. We show how the active uptake of nanoparticles translates into cell stiffening in a short time scale (< 30 min), at the single cell level. The cell stiffening effect is however less marked at the cell population level, when the cells are pre-labeled under a longer incubation time (2 h) with nanoparticles. 24 h later, the stiffening effect is no more present. Imaging of the nanoparticle uptake reveals almost immediate (within minutes) nanoparticle aggregation at the cell membrane, triggering early endocytosis, whereas nanoparticles are almost all confined in late or lysosomal endosomes after 2 h of uptake. Remarkably, this correlates well with the imaging of the actin cytoskeleton, with actin bundling being highly prevalent at early time points into the exposure to the nanoparticles, an effect that renormalizes after longer periods.
Conclusions: Overall, this work evidences that magnetic nanoparticle internalization, coupled to cytoskeleton remodeling, contributes to a change in the cell mechanical properties within minutes of their initial contact, leading to an increase in cell rigidity. This effect appears to be transient, reduced after hours and disappearing 24 h after the internalization has taken place.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8074464 | PMC |
http://dx.doi.org/10.1186/s12951-021-00790-y | DOI Listing |
Stem cells adapt to their local mechanical environment by rearranging their cytoskeleton, which underpins the evolution of their shape and fate as well as the emergence of tissue structure and function. Here, in the second part of a two-part experimental series, we aimed to elucidate spatiotemporal cytoskeletal remodeling and resulting changes in morphology and mechanical properties of cells and their nuclei. Akin to mechanical testing of the most basic living and adapting unit of life, i.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia.
A finite element model of the local mechanical response of a filled polymer composite to uniaxial compression is presented. The interfacial layer between filler particles and polymer matrix is explicitly modeled as a third phase of the composite. Unit cells containing one or several anisometric filler particles surrounded by interface shells are considered.
View Article and Find Full Text PDFJ Mol Cell Cardiol
January 2025
Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, USA. Electronic address:
Vinculin (VCL) is a key adapter protein located in force-bearing costamere complexes, which mechanically couples the sarcomere to the ECM. Heterozygous vinculin frameshift genetic variants can contribute to cardiomyopathy when external stress is applied, but the mechanosensitive pathways underpinning VCL haploinsufficiency remain elusive. Here, we show that in response to extracellular matrix stiffening, heterozygous loss of VCL disrupts force-mediated costamere protein recruitment, thereby impairing cardiomyocyte contractility and sarcomere organization.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Physics, M.V. Lomonosov Moscow State University, 1/2 Leninskie Gory, 119991 Moscow, Russia.
Biomimetic hydrogels have garnered increased interest due to their considerable potential for use in various fields, such as tissue engineering, 3D cell cultivation, and drug delivery. The primary challenge for applying hydrogels in tissue engineering is accurately evaluating their mechanical characteristics. In this context, we propose a method using scanning ion conductance microscopy (SICM) to determine the rigidity of living human breast cancer cells MCF-7 cells grown on a soft, self-assembled Fmoc-FF peptide hydrogel.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Ophthalmology, School of Medicine, Sapporo Medical University, S1 W16 Chuo-ku, Sapporo City 060-8543, Hokkaido, Japan.
Background/objectives: The objective of the present study was to examine the unidentified effects that RHO-associated coiled-coil-containing protein kinase 1 and 2 antagonists exert on the transforming growth factor beta2-induced epithelial-mesenchymal transition of the human corneal stroma.
Methods: In the presence or absence of pan-RHO-associated coiled-coil-containing protein kinase inhibitors, ripasudil or Y27632 and RHO-associated coiled-coil-containing protein kinase 2 inhibitor, KD025, we analyzed the following: (1) planar proliferation caused by trans-endothelial electrical resistance and the cellular metabolic characteristics of the two-dimensional cultures of human corneal stroma fibroblasts; (2) the physical properties of a three-dimensional human corneal stroma fibroblasts spheroid; and (3) the gene expressions and their regulators in the extracellular matrix, along with the tissue inhibitors of metalloproteinases and matrix metalloproteinases and the endoplasmic reticulum stress-related factors of the two-dimensional and three-dimensional cultures in human corneal stroma fibroblasts.
Results: Exposure to 5 nM of the transforming growth factor beta2 markedly increased the trans-endothelial electrical resistance values as well as the metabolic function in two-dimensional cultures of human corneal stroma fibroblasts.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!