Background/aims: Daphnetin (7,8-dihydroxycoumarin, DAP) exhibits various bioactivities, such as anti-inflammatory and antioxidant activities. However, the role of DAP in myocardial ischaemia/reperfusion (I/R) injury and I/R-related arrhythmia is still uncertain. This study aimed to investigate the mechanisms underlying the effects of DAP on myocardial I/R injury and electrophysiological properties in vivo and in vitro.
Methods: Myocardial infarct size was measured by triphenyltetrazolium chloride staining. Cardiac function was assessed by echocardiographic and haemodynamic analyses. The levels of creatine kinase-MB, lactate dehydrogenase, malondialdehyde, superoxide dismutase, interleukin-6 (IL-6), and tumour necrosis factor-alpha (TNF-α) were detected using commercial kits. Apoptosis was measured by terminal deoxynucleotidyl-transferase-mediated dUTP nick-end labelling staining and flow cytometry. The viability of H9c2 cells was determined by the Cell Counting Kit-8 assay. In vitro, the levels of IL-6 and TNF-α were measured by quantitative PCR. The expression levels of proteins associated with apoptosis, inflammation, and the Toll-like receptor 4/myeloid differentiation factor 88/nuclear factor kappa B (TLR4/MyD88/NF-κB) signalling pathway were detected by Western blot analysis. The RR, PR, QRS, and QTc intervals were assessed by surface ECG. The 90% action potential duration (APD90), threshold of APD alternans, and ventricular tachycardia inducibility were measured by the Langendorff perfusion technique.
Results: DAP preconditioning decreased myocardial I/R injury and hypoxia/reoxygenation (H/R) injury in cells. DAP preconditioning improved cardiac function after myocardial I/R injury. DAP preconditioning also suppressed apoptosis, attenuated oxidative stress, and inhibited inflammatory responses in vivo and in vitro. Furthermore, DAP preconditioning decreased the susceptibility to ventricular arrhythmia after myocardial I/R. Finally, DAP preconditioning inhibited the expression of TLR4, MyD88, and phosphorylated NF-κB (p-NF-κB)/P65 in mice subjected to I/R and cells subjected to H/R.
Conclusions: DAP preconditioning protected against myocardial I/R injury and decreased susceptibility to ventricular arrhythmia by inhibiting the TLR4/MyD88/NF-κB signalling pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8315677 | PMC |
http://dx.doi.org/10.1159/000513631 | DOI Listing |
Antimicrob Agents Chemother
March 2022
School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Clinical treatment options for daptomycin (DAP)-resistant (DAP-R), methicillin-resistant Staphylococcus aureus (MRSA) infections are relatively limited. Current therapeutic strategies often take advantage of potential synergistic activity of DAP plus β-lactams; however, the mechanisms underlying their combinatorial efficacy are likely complex and remain incompletely understood. We recently showed that β-lactam passaging can resensitize DAP-R strains to a DAP-susceptible (DAP-S) phenotype.
View Article and Find Full Text PDFAntimicrob Agents Chemother
January 2022
Division of Infectious Diseases, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California, USA.
Increased usage of daptomycin (DAP) for methicillin-resistant Staphylococcus aureus (MRSA) infections has led to emergence of DAP-resistant (DAP-R) strains, resulting in treatment failures. DAP-fosfomycin (Fosfo) combinations are synergistically active against MRSA, although the mechanism(s) of this interaction is not fully understood. The current study explored four unique but likely interrelated activities of DAP-Fosfo combinations: (i) synergistic killing, (ii) prevention of evolution of DAP-R, (iii) resensitization of already DAP-R subpopulations to a DAP-susceptible (DAP-S) phenotype, and (iv) perturbations of specific cell envelope phenotypes known to correlate with DAP-R in MRSA.
View Article and Find Full Text PDFPharmacology
November 2021
Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China.
Background/aims: Daphnetin (7,8-dihydroxycoumarin, DAP) exhibits various bioactivities, such as anti-inflammatory and antioxidant activities. However, the role of DAP in myocardial ischaemia/reperfusion (I/R) injury and I/R-related arrhythmia is still uncertain. This study aimed to investigate the mechanisms underlying the effects of DAP on myocardial I/R injury and electrophysiological properties in vivo and in vitro.
View Article and Find Full Text PDFASAIO Trans
January 1991
Department of Surgery, University of Tsukuba, Ibaraki, Japan.
A valveless, single-orifice counterpulsation device powered by skeletal muscle was applied to the pulmonary artery for right heart assist. Latissimus dorsi muscles of six dogs had been electrically conditioned for four months in advance (Group 1); the muscles of eight dogs were not preconditioned (Group 2). A polyvinyl chloride balloon was placed beneath the latissimus dorsi muscle and connected to the left pulmonary artery using a noncollapsing graft.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!