Motion-induced inertial effects and topological phase transitions in skyrmion transport.

J Phys Condens Matter

Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Brazil.

Published: May 2021

When the skyrmion dynamics beyond the particle-like description is considered, this topological structure can deform due to a self-induced field. In this work, we perform Monte Carlo simulations to characterize the skyrmion deformation during its steady movement. In the low-velocity regime, the deformation in the skyrmion shape is quantified by an effective inertial mass, which is related to the dissipative force. When skyrmions move faster, the large self-induced deformation triggers topological transitions. These transitions are characterized by the proliferation of skyrmions and a different total topological charge, which is obtained as a function of the skyrmion velocity. Our findings provide an alternative way to describe the dynamics of a skyrmion that accounts for the deformations of its structure. Furthermore, such motion-induced topological phase transitions make it possible to control the number of ferromagnetic skyrmions through velocity effects.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/abfb8cDOI Listing

Publication Analysis

Top Keywords

topological phase
8
phase transitions
8
skyrmion
6
topological
5
motion-induced inertial
4
inertial effects
4
effects topological
4
transitions
4
transitions skyrmion
4
skyrmion transport
4

Similar Publications

Synchronization stability of epileptic brain network with higher-order interactions.

Chaos

January 2025

Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.

Generally, epilepsy is considered as abnormally enhanced neuronal excitability and synchronization. So far, previous studies on the synchronization of epileptic brain networks mainly focused on the synchronization strength, but the synchronization stability has not yet been explored as deserved. In this paper, we propose a novel idea to construct a hypergraph brain network (HGBN) based on phase synchronization.

View Article and Find Full Text PDF

Topological interface states (TISs), known for their distinctive capabilities in manipulating electromagnetic waves, have attracted significant interest. However, in conventional all-dielectric one-dimensional photonic crystal (1DPC) heterostructures, TISs strongly depend on incident angle, which limits their practical applications. Here, we realize an angle-independent TIS in 1DPC heterostructures containing hyperbolic metamaterials (HMMs) for transverse magnetic polarized waves.

View Article and Find Full Text PDF

Observation of momentum-gap topology of light at temporal interfaces in a time-synthetic lattice.

Nat Commun

January 2025

State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China.

Topological phases have prevailed across diverse disciplines, spanning electronics, photonics, and acoustics. Hitherto, the understanding of these phases has centred on energy (frequency) bandstructures, showcasing topological boundary states at spatial interfaces. Recent strides have uncovered a unique category of bandstructures characterised by gaps in momentum, referred to as momentum bandgaps or k gaps, notably driven by breakthroughs in photonic time crystals.

View Article and Find Full Text PDF

Potassium manganese-based Prussian blue analogs (KMn-HCF) hold great potential as cathodes for sodium-ion batteries (SIBs). However, the rapid synthesis process often results in excessively small particle sizes, increasing surface area and thereby intensifying side reactions with the electrolyte, which can damage the cathode electrolyte interface (CEI) and diminish cycling stability. Herein, we designed a topological phase transition strategy to assemble small KMn-HCF particles into a 600 nm cubic superstructure.

View Article and Find Full Text PDF

Designing Chiral Organometallic Nanosheets with Room-Temperature Multiferroicity and Topological Nodes.

Nano Lett

January 2025

Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, Anhui 230031, China.

Two-dimensional (2D) room-temperature chiral multiferroic and magnetic topological materials are essential for constructing functional spintronic devices, yet their number is extremely limited. Here, by using the chiral and polar HPP (HPP = 4-(3-hydroxypyridin-4-yl)pyridin-3-ol) as an organic linker and transition metals (TM = Cr, Mo, W) as nodes, we predict a class of 2D TM(HPP) organometallic nanosheets that incorporate homochirality, room-temperature magnetism, ferroelectricity, and topological nodes. The homochirality is introduced by chiral HPP linkers, and the change in structural chirality induces a topological phase transition of Weyl phonons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!