A compartment modeling approach to reconstruct and analyze gender and age-grouped CoViD-19 Italian data for decision-making strategies.

J Biomed Inform

Department of Medical Biotechnologies, Bioengineering Lab, University of Siena, Siena, Italy; Department of Information Engineering and Mathematics, University of Siena, Siena, Italy.

Published: June 2021

Background: Available national public data are often too incomplete and noisy to be used directly to interpret the evolution of epidemics over time, which is essential for making timely and appropriate decisions. The use of compartment models can be a worthwhile and attractive approach to address this problem. The present study proposes a model compartmentalized by sex and age groups that allows for more complete information on the evolution of the CoViD-19 pandemic in Italy.

Material And Methods: Italian public data on CoViD-19 were pre-treated with a 7-day moving average filter to reduce noise. A time-varying susceptible-infected-recovered-deceased (SIRD) model distributed by age and sex groups was then proposed. Recovered and infected individuals distributed by groups were reconstructed through the SIRD model, which was also used to simulate and identify optimal scenarios of pandemic containment by vaccination. The simulation started from realistic initial conditions based on the SIRD model parameters, estimated from filtered and reconstructed Italian data, at different pandemic times and phases. The following three objective functions, accounting for total infections, total deaths, and total quality-adjusted life years (QALYs) lost, were minimized by optimizing the percentages of vaccinated individuals in five different age groups.

Results: The developed SIRD model clearly highlighted those pandemic phases in which younger people, who had more contacts and lower mortality, infected older people, characterized by a significantly higher mortality, especially in males. Optimizing vaccination strategies yielded different results depending on the cost function used. As expected, to reduce total deaths, the suggested strategy was to vaccinate the older age groups, whatever the baseline scenario. In contrast, for QALYs lost and total infections, the optimal vaccine solutions strongly depended on the initial pandemic conditions: during phases of high virus diffusion, the model suggested to vaccinate mainly younger groups with a higher contact rate.

Conclusion: Because of the poor quality and insufficient availability of stratified public pandemic data, ad hoc information filtering and reconstruction procedures proved essential. The time-varying SIRD model, stratified by age and sex groups, provided insights and additional information on the dynamics of CoViD-19 infection in Italy, also supporting decision making for containment strategies such as vaccination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8064908PMC
http://dx.doi.org/10.1016/j.jbi.2021.103793DOI Listing

Publication Analysis

Top Keywords

sird model
20
italian data
8
public data
8
age groups
8
age sex
8
sex groups
8
total infections
8
total deaths
8
qalys lost
8
model
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!