Objectives: To measure the accuracy (trueness and precision) of a facial scanner depending on the alignment method and the digitized surface area location.

Methods: Fourteen markers were adhered on a head mannequin and digitized using an industrial scanner (GOM Atos Q 3D 12 M; Carl Zeiss Industrielle Messtechnik GmbH). A control mesh was acquired. Subsequently, the mannequin was digitized using a facial scanner (Arc4; Bellus3D) (n = 30). The control mesh was delineated into 10 areas. Based on the alignment procedures, two groups were created: reference best fit (RBF group) and landmark-based best fit (LA group). The root mean square was used to calculate the discrepancy between the control mesh and each facial scan. A 2-way ANOVA and Tukey pairwise comparison tests were used to compare trueness and precision between the 2 groups across 10 areas (α = .05).

Results: Both alignment algorithms (P = .007) and digitized area (P < .001) were significant predictors of trueness with a significant interaction between the two predictors (F (9, 580) =25.13, P < .001). Tukey pairwise comparison showed that there was a significant difference between mean trueness values of RBF (mean=0.53 mm) and LA (mean=0.55 mm) groups. Moreover, a significant difference was detected among the trueness values across surface areas. The A9-area (left tragus area) had the highest and A5-area (right cheek area) had the lowest mean trueness. Both alignment algorithm (P < .001) and digitized surface area (P < .001) were significant predictors of precision with a significant interaction between the two predictors (F (9, 580) =14.34, P < .001). Tukey pairwise comparison showed that there was a significant difference between mean precision values of RBF (mean=0.38 mm) and LA (mean=0.35 mm) groups. Moreover, a significant difference was detected among the precision values across surface areas. Comparing the surface areas, A9-area had the highest and A10-area (forehead area) had the lowest mean precision.

Conclusions: Alignment procedures influenced on the scanning trueness and precision mean values, but the facial scanner accuracy values obtained were within the clinically acceptable accuracy threshold of less or equal than 2 mm. Furthermore, the scanning accuracy (for both trueness and precision) depended on the location of the scanned surface area, being more accurate on the middle of the face than on the sides of the face.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jdent.2021.103680DOI Listing

Publication Analysis

Top Keywords

control mesh
12
depending alignment
8
digitized surface
8
surface area
8
trueness precision
8
facial scanner
8
mannequin digitized
8
best fit
8
digitized
5
facial
4

Similar Publications

Mesh-Collision Microtube Plasma Ion Source for Direct Mass Spectrometry Analysis.

Anal Chem

January 2025

Chinese Academy of Inspection and Quarantine, Beijing 100176, China.

Developing ambient ionization methods for direct mass spectrometry (MS) analysis is crucial for achieving sample-to-answer capabilities, especially for rapid analysis and monitoring in specific scenarios. Herein, a compact device is presented that utilizes mesh-collision microtube plasma (MC-μTP) ionization for direct online MS analysis. This device features a self-aspirating design that enables the direct analysis of various sample types.

View Article and Find Full Text PDF

Metallic biomaterials are extensively used in orthopedics and dentistry, either as implants or coatings. In both cases, metal ions come into contact with surrounding tissues causing a particular cell response. Here, we present a biofabricated tissue model, consisting of a hydrogel reinforced with a melt electrowritten mesh, to study the effects of bound and released metal ions on surrounding cells embedded in a hydrogel matrix.

View Article and Find Full Text PDF

Radiographical impact of photobiomodulation therapy on bone regeneration in clinical studies: a systematic review.

Lasers Med Sci

January 2025

International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran.

Bone regeneration is a complex process influenced by inflammation and pathological conditions. Efforts to enhance this process include chemical and physical interventions, with PBMT therapy showing promise in improving bone regeneration. Despite conflicting findings in existing literature, this review aims to synthesize clinical evidence on using therapy (PBMT) in bone regeneration and explore its potential clinical applications.

View Article and Find Full Text PDF

Small interfering RNA (siRNA) and messenger RNA (mRNA) have drawn considerable attention in recent years due to their ability to modulate the expression of specific disease-related proteins. However, it is difficult to find safe, robust, and effective RNA delivery systems suitable for pulmonary delivery to treat lung diseases. In this study, two cationic peptides, namely LAH4-L1 and PEGKL4, were employed as non-viral vectors for siRNA and mRNA delivery.

View Article and Find Full Text PDF

Combined negative pressure wound therapy with new wound dressings to repair a ruptured giant omphalocele in a neonate: a case report and literature review.

BMC Pediatr

January 2025

Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, Sichuan Province, China.

Background: Current treatment of giant omphalocele in newborns is not standardized. The main treatments include one-time repair and staged surgery using synthetic and biologic mesh, or silos. However, surgery can lead to various postoperative complications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!