Targeting the autophagy process is considered to be a promising new strategy for drug treatment of ovarian cancer. α-Tomatine, a steroidal alkaloid extracted, is mainly isolated from leaves, roots and immature green tomatoes. α-Tomatine has biological activities such as anticancer, antioxidative and anti-inflammatory. The study aimed to explore the effects of α-tomatine on proliferation, apoptosis and autophagy and the underlying mechanisms in ovarian cancer Skov3 cells. After treatment with different concentrations of α-tomatine (0, 0.75, 1 and 1.5 μM) in Skov3 cells for 24 h, proliferation was determined by the CCK-8 assay, and apoptosis was detected by flow cytometric analysis. Autophagy in cells was determined by the number of fluorescent spots using confocal fluorescence microscopy after mRFP-GFP-LC3 transfection. The relationship between autophagy and apoptosis was proved by Beclin-1 overexpression. The protein expression levels were tested by western blotting. The results demonstrated that α-tomatine effectively repressed proliferation, exerted a proapoptotic effect and inhibited early-stage autophagy in Skov3 cells in a dose- and time-dependent manner. Additionally, Beclin-1 overexpression significantly suppressed α-tomatine-treated apoptosis in Skov3 cells, indicating that α-tomatine inhibits autophagy to induce apoptosis. We also found α-tomatine inhibited the protein expression levels of PI3K/Akt/mTOR signaling pathway. However, the autophagy inhibition of α-tomatine could be reversed obviously by Beclin-1 overexpression. Taken together, α-tomatine inhibited autophagy through Beclin-1. Our study suggests that α-tomatine, as a novel early-stage autophagy inhibitor, might be a potential drug for further treatment of ovarian cancer by inhibiting proliferation and promoting apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fitote.2021.104911DOI Listing

Publication Analysis

Top Keywords

skov3 cells
20
early-stage autophagy
12
ovarian cancer
12
beclin-1 overexpression
12
α-tomatine
11
autophagy
11
α-tomatine novel
8
novel early-stage
8
autophagy inhibitor
8
inhibits autophagy
8

Similar Publications

Prognosis prediction and drug guidance of ovarian serous cystadenocarcinoma through mitochondria gene-based model.

Cancer Genet

December 2024

Department of Obstetrics and Gynecology, Shanghai Tongji Hospital, School of Medicine, Tongji University, 200120, PR China; Department of Obstetrics and Gynecology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China. Electronic address:

Background: Mitochondrial dysregulation contributes to the chemoresistance of multiple cancer types. Yet, the functions of mitochondrial dysregulation in Ovarian serous cystadenocarcinoma (OSC) remain largely unknown.

Aim: We sought to investigate the function of mitochondrial dysregulation in OSC from the bioinformatics perspective.

View Article and Find Full Text PDF

Nanomedical applications have increased significantly. This work aimed to fabricate and characterize cobalt oxide nanoparticles (CoOnps) synthesized biologically via aqueous Alhagi maurorum extract and evaluate their cytotoxic and antimicrobial impacts. Green-synthesized CoOnps were prepared and analyzed using UV-Vis spectrophotometer UV-vis, Scanning electron microscopy (SEM), Transmission electron microscopy TEM, Energy dispersive X-ray analysis EDAX, Fourier transform infrared, FTIR, and X-ray diffraction (XRD).

View Article and Find Full Text PDF

Introduction: Placental extracellular vesicles (EVs), lipid-enclosed particles released from the placenta, can facilitate intercellular communication and are classified as micro- or nano-EVs depending on size. Placental EVs contain molecules associated with cell proliferation and death. In this study, we investigated whether treating human ovarian tumour explants with placental EVs could induce ovarian tumour cell death.

View Article and Find Full Text PDF

Tissue factor targeted near-infrared photoimmunotherapy: a versatile therapeutic approach for malignancies.

Cancer Immunol Immunother

January 2025

Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA.

Tissue factor (TF) is a cell surface protein that plays a role in blood clotting but is also commonly expressed in many cancers. Recent research implicated TF in cancer proliferation, metastasis, angiogenesis, and immune escape. Therefore, TF can be considered a viable therapeutic target against cancer.

View Article and Find Full Text PDF

Extracts of medicinal seeds can be used to synthesize nanoparticles (NPs) in more environmentally friendly ways than physical or chemical ways. For the first time, aqueous extract from unexploited grape seeds was used in this study to create Se/ZnO NPS utilizing a green technique, and their antimicrobial activity, cytotoxicity, antioxidant activities, and plant bio stimulant properties of the economic Vicia faba L. plant were evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!