Objective: Accurate calculation of set-up margin is a prerequisite to arrive at the most optimal clinical to planning target volume margin. The aim of this study was to evaluate the compatibility of different on-board and in-room stereoscopic imaging modalities by calculating the set-up margins (SM) in stereotactic body radiotherapy technique accounting and unaccounting for rotational positional errors (PE). Further, we calculated separate SMs one based on residual positional errors and another based on residual + intrafraction positional errors from the imaging data obtained in a dual imaging environment.

Materials And Methods: A total of 22 lung cancer patients were included in this study. For primary image guidance, four-dimensional cone beam computed tomography (4-D CBCT) was used and stereoscopic ExacTrac was used as the auxiliary imaging. Following table position correction (TPC) based on the initial 4-D CBCT, another 4-D CBCT (post-TPC) and a pair of stereoscopic ExacTrac images were obtained. Further, during the treatment delivery, a series of ExacTrac images were acquired to identify the intrafraction PE. If a, b and c were the observed translational shifts in lateral (x-axis), longitudinal (y-axis) and vertical direction (z-axis) and α, β and γ were the rotational shifts in radians about the same axes, respectively, then the resultant translational vectors (A, B and C) were calculated on the basis of translational and rotational values. Set-up margins were calculated using residual errors post-TPC only and also using intrafraction positional errors in addition to the residual errors.

Results: Residual and residual + intrafraction SM were calculated from a dataset of 82 CBCTs and 189 ExacTrac imaging sessions. CBCT-based mean ± SD shifts in translational and rotational directions were 0.3 ± 1.8 mm, 0.1 ± 1.8 mm, - 0.4 ± 1.6 mm, 0.1 ± 0.4°, 0.0 ± 1.0° and 0.3 ± 0.7°, respectively, and for ExacTrac - 0.1 ± 1.8 mm, 0.2 ± 2.4 mm, - 0.6 ± 1.8 mm, 0.1 ± 1.2°, - 0.2 ± 1.3° and - 0.1 ± 0.6°, respectively. Residual SM without considering the rotational correction in x, y and z directions were 5.0 mm, 4.5 mm and 4.4 mm; rotation-corrected SM were 4.4 mm, 4.0 mm and 5.5 mm, respectively. Residual plus intrafraction SM were 5.5 mm, 6.6 mm and 6.2 mm without considering the rotational corrections, whereas they were 5.0 mm, 6.3 mm and 6.2 mm with rotational errors accounted for.

Conclusion: Accurate calculation of set-up margin is required to find the clinical to planning target volume margin. Primary and auxiliary imaging margins fall in the range of 4.0 to 5.5 mm and 5.0 to 7.0 mm, respectively, indicating a higher SM for X-ray-based planar imaging techniques over three-dimensional cone beam images. This study established the degree of mutual compatibility between two different kinds of widely used set-up imaging modalities, on-board CBCT and in-room stereoscopic imaging ExacTrac. It also describes the technique to calculate the residual and residual plus intrafraction SM and its variation in a dual imaging environment accounting for rotational PE in stereotactic body radiotherapy of lung.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11547-021-01355-7DOI Listing

Publication Analysis

Top Keywords

positional errors
16
set-up margin
12
stereotactic body
12
body radiotherapy
12
imaging
12
dual imaging
12
cone beam
12
stereoscopic imaging
12
4-d cbct
12
rotational
9

Similar Publications

Quantitative comparison of a mobile, tablet-based eye-tracker and two stationary, video-based eye-trackers.

Behav Res Methods

January 2025

Department Neurophysics, Philipps-Universität Marburg, Fachbereich Physik, AG Neurophysik, Karl-Von-Frisch-Straße 8a, 35043, Marburg, Lahnberge, Germany.

The analysis of eye movements is a noninvasive, reliable and fast method to detect and quantify brain (dys)function. Here, we investigated the performance of two novel eye-trackers-the Thomas Oculus Motus-research mobile (TOM-rm) and the TOM-research stationary (TOM-rs)-and compared them with the performance of a well-established video-based eye-tracker, i.e.

View Article and Find Full Text PDF

Panoramic Nailfold Flow Velocity Measurement Method Based on Enhanced Plasma Gap Information.

J Imaging Inform Med

January 2025

State Key Laboratory of Traditional Chinese Medicine Syndrome/Health Construction Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.

Nailfold microcirculation examination is crucial for the early differential diagnosis of diseases and indicating their severity. In particular, panoramic nailfold flow velocity measurements can provide direct quantitative indicators for the study of vascular diseases and technical support to assess vascular health. Previously, nailfold imaging equipment was limited by a small field of view.

View Article and Find Full Text PDF

Objectives: Intraoral periapical radiographic techniques are mandatory exercises taught to undergraduate students during their training. The key challenges encountered while teaching the bisecting angle technique (BAT) include correctly positioning the X-ray cone and adjusting the central X-ray beam to the tooth of interest. To address this, a custom-designed pointed laser light (CDPLL) was fabricated and attached to the X-ray cone.

View Article and Find Full Text PDF

We developed a deep learning-based extraction of electrocardiographic (ECG) waves from ballistocardiographic (BCG) signals and explored their use in R-R interval (RRI) estimation. Preprocessed BCG and reference ECG signals were inputted into the bidirectional long short-term memory network to train the model to minimize the loss function of the mean squared error between the predicted ECG (pECG) and genuine ECG signals. Using a dataset acquired with polyvinylidene fluoride and ECG sensors in different recumbent positions from 18 participants, we generated pECG signals from preprocessed BCG signals using the learned model and evaluated the RRI estimation performance by comparing the predicted RRI with the reference RRI obtained from the ECG signal using a leave-one-subject-out cross-validation scheme.

View Article and Find Full Text PDF

Aim: Verruca vulgaris is a common skin disease among children. Foreign object mimicking a wart is unusual.

Methods: A report of a 6-year-old boy with foreign object misdiagnosed as verruca vulgaris.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!