Chromatin-associated condensates are implicated in many nuclear processes, but the underlying mechanisms remain elusive. This protocol describes a chemically-induced protein dimerization system to create condensates on telomeres. The chemical dimerizer consists of two linked ligands that can each bind to a protein: Halo ligand to Halo-enzyme and trimethoprim (TMP) to E. coli dihydrofolate reductase (eDHFR), respectively. Fusion of Halo enzyme to a telomere protein anchors dimerizers to telomeres through covalent Halo ligand-enzyme binding. Binding of TMP to eDHFR recruits eDHFR-fused phase separating proteins to telomeres and induces condensate formation. Because TMP-eDHFR interaction is non-covalent, condensation can be reversed by using excess free TMP to compete with the dimerizer for eDHFR binding. An example of inducing promyelocytic leukemia (PML) nuclear body formation on telomeres and determining condensate growth, dissolution, localization and composition is shown. This method can be easily adapted to induce condensates at other genomic locations by fusing Halo to a protein that directly binds to the local chromatin or to dCas9 that is targeted to the genomic locus with a guide RNA. By offering the temporal resolution required for single cell live imaging while maintaining phase separation in a population of cells for biochemical assays, this method is suitable for probing both the formation and function of chromatin-associated condensates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8118565PMC
http://dx.doi.org/10.3791/62173DOI Listing

Publication Analysis

Top Keywords

condensates telomeres
8
chromatin-associated condensates
8
protein
5
condensates
5
telomeres
5
chemical dimerization-induced
4
dimerization-induced protein
4
protein condensates
4
telomeres chromatin-associated
4
condensates implicated
4

Similar Publications

Biomolecular Condensates in Telomere Maintenance of ALT Cancer Cells.

J Mol Biol

January 2025

Department of Biology, Carnegie Mellon University, Pittsburgh, PA 15213, USA. Electronic address:

Alternative Lengthening of Telomeres (ALT) pathway is a telomerase-independent mechanism that utilizes homology-directed repair (HDR) to sustain telomere length in specific cancers. Biomolecular condensates, such as ALT-associated promyelocytic leukemia nuclear bodies (APBs), have emerged as critical players in the ALT pathway, supporting telomere maintenance in ALT-positive cells. These condensates bring together DNA repair proteins, telomeric repeats, and other regulatory elements.

View Article and Find Full Text PDF

The nuclear condensates of ESE3/EHF induce cellular senescence without the associated inflammatory secretory phenotype in pancreatic ductal adenocarcinoma.

Cancer Lett

December 2024

Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China. Electronic address:

Senescent cells are in a stable state of cell cycle arrest, leading to a natural barrier to tumorigenesis. Senescent cells secrete a pool of molecules, including cytokines, chemokines, proteases, and growth factors, termed the senescence-associated secretory phenotype (SASP), paradoxically contributing to pro-tumorigenic processes. However, the mechanism for regulating senescence and SASP in tumor cells remains unclear.

View Article and Find Full Text PDF

The environmental challenges the human malaria parasite, , faces during its progression into its various lifecycle stages warrant the use of effective and highly regulated access to chromatin for transcriptional regulation. Microrchidia (MORC) proteins have been implicated in DNA compaction and gene silencing across plant and animal kingdoms. Accumulating evidence has shed light on the role MORC protein plays as a transcriptional switch in apicomplexan parasites.

View Article and Find Full Text PDF
Article Synopsis
  • Jumping translocations (JT), linked to disease progression in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML), involve the movement of a tri-tetra-somic 1q chromosome to various other chromosomes.
  • Research showed that in patients with SRSF2 mutations, JT was associated with changes in DNA methylation during treatment with 5'-azacytidine (AZA), revealing significant shifts in the methylome and impacting various biological pathways.
  • The study highlighted that epigenetic modifications, including changes in DNA methylation and specific signaling pathways like PI3K/AKT and MAPK, play a crucial role in the progression of myeloid neoplasms associated with
View Article and Find Full Text PDF

Traffic-related particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) have been linked to respiratory diseases and cancer risk in humans. Genomic damage, including benzo[a]pyrene diolepoxide (BPDE)-DNA adducts as well as alterations in telomere length (TL) and mitochondrial DNA copy number (mtDNA-CN) are associated with respiratory diseases. This study aimed to investigate the association between exposure to traffic-related particulate pollutants and genomic damage in exhaled breath condensate (EBC) in human subjects and a bronchial epithelial cell line (BEAS-2B).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!