A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Validation of an electronic algorithm for Hodgkin and non-Hodgkin lymphoma in ICD-10-CM. | LitMetric

AI Article Synopsis

  • A study developed and validated an algorithm to accurately identify lymphoma cases using ICD-10-CM codes in healthcare claims data for drug safety research.
  • The algorithm identified potential lymphoma cases based on specific coding criteria, resulting in 8723 identified cases, with a 77% positive predictive value after chart validation.
  • The approach is effective and cost-efficient, making it suitable for large-scale studies on drug safety and public health outcomes.

Article Abstract

Purpose: Lymphoma is a health outcome of interest for drug safety studies. Studies using administrative claims data require the accurate identification of lymphoma cases. We developed and validated an International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM)-based algorithm to identify lymphoma in healthcare claims data.

Methods: We developed a three-component algorithm to identify patients aged ≥15 years who were newly diagnosed with Hodgkin (HL) or non-Hodgkin (NHL) lymphoma from January 2016 through July 2018 among members of four Data Partners within the FDA's Sentinel System. The algorithm identified potential cases as patients with ≥2 ICD-10-CM lymphoma diagnosis codes on different dates within 183 days; ≥1 procedure code for a diagnostic procedure (e.g., biopsy, flow cytometry) and ≥1 procedure code for a relevant imaging study within 90 days of the first lymphoma diagnosis code. Cases identified by the algorithm were adjudicated via chart review and a positive predictive value (PPV) was calculated.

Results: We identified 8723 potential lymphoma cases via the algorithm and randomly sampled 213 for validation. We retrieved 138 charts (65%) and adjudicated 134 (63%). The overall PPV was 77% (95% confidence interval: 69%-84%). Most cases also had subtype information available, with 88% of cases identified as NHL and 11% as HL.

Conclusions: Seventy-seven percent of lymphoma cases identified by an algorithm based on ICD-10-CM diagnosis and procedure codes and applied to claims data were true cases. This novel algorithm represents an efficient, cost-effective way to target an important health outcome of interest for large-scale drug safety and public health surveillance studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8205565PMC
http://dx.doi.org/10.1002/pds.5256DOI Listing

Publication Analysis

Top Keywords

lymphoma cases
12
cases identified
12
lymphoma
9
algorithm
8
hodgkin non-hodgkin
8
health outcome
8
outcome interest
8
drug safety
8
claims data
8
cases
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!