In the process of nasal tissue remodeling, nasal fibroblasts serve an important role via myofibroblast differentiation and the production of extracellular matrix (ECM). Nasal fibroblast abnormalities can lead to conditions such as chronic rhinosinusitis. Salvianolic acid B (Sal B), a water-soluble active pharmaceutical compound extract from the root of the traditional Chinese medicine , displays antioxidative, antiproliferative and antifibrosis properties. The present study aimed to investigate the mechanism underlying the effects of Sal B on nasal polyp fibroblast (NPF) myofibroblast differentiation and ECM accumulation. Primary NPFs were obtained from nasal polyps of patients with chronic sinusitis. The proliferative and cytotoxic effects of Sal B on NPFs were evaluated by performing the Cell Counting Kit-8 assay. The Transwell assay was conducted to assess cell migration. α-smooth muscle actin (α-SMA), TGF-β1 receptor (TβR)-I, TβR-II, Smad2/3 mRNA and protein expression levels and (p)-Smad2/3 phosphorylation levels were measured via reverse transcription-quantitative PCR and western blotting, respectively. Type III collagen and fibronectin levels were analyzed by ELISA. The results indicated that Sal B significantly downregulated TGF-β1-induced α-SMA, fibronectin and collagen III expression levels in NPFs. Similarly, Sal B significantly decreased TGF-β1-induced TβR-I, TβR-II, p-Smad2/3, MMP-2 and MMP-9 mRNA and protein expression levels in NPFs. Furthermore, Sal B significantly decreased TGF-β1-induced NPF migration. Therefore, the present study indicated that Sal B inhibited myofibroblast differentiation and ECM accumulation in nasal fibroblasts, suggesting that Sal B may inhibit nasal polyp formation via certain mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/mmr.2021.12117 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!