Herein, we review aspects of leading-edge research and innovation in materials science that exploit big data and machine learning (ML), two computer science concepts that combine to yield computational intelligence. ML can accelerate the solution of intricate chemical problems and even solve problems that otherwise would not be tractable. However, the potential benefits of ML come at the cost of big data production; that is, the algorithms demand large volumes of data of various natures and from different sources, from material properties to sensor data. In the survey, we propose a roadmap for future developments with emphasis on computer-aided discovery of new materials and analysis of chemical sensing compounds, both prominent research fields for ML in the context of materials science. In addition to providing an overview of recent advances, we elaborate upon the conceptual and practical limitations of big data and ML applied to materials science, outlining processes, discussing pitfalls, and reviewing cases of success and failure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8054236 | PMC |
http://dx.doi.org/10.1007/s43939-021-00012-0 | DOI Listing |
Gigascience
January 2025
Department of Animal Science, Iowa State University, Ames, IA, 50011, US.
The scientific community has long benefited from the opportunities provided by data reuse. Recognizing the need to identify the challenges and bottlenecks to reuse in the agricultural research community and propose solutions for them, the data reuse working group was started within the AgBioData consortium framework. Here, we identify the limitations of data standards, metadata deficiencies, data interoperability, data ownership, data availability, user skill level, resource availability, and equity issues, with a specific focus on agricultural genomics research.
View Article and Find Full Text PDFDiabetes
January 2025
Department of Big Data in Health Science, Zhejiang University School of Public Health and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Clonal haematopoiesis of indeterminate potential (CHIP) is associated with macrovascular diseases, including coronary artery disease and stroke. However, the effects of CHIP on microvascular complication have not been evaluated in individuals with type 2 diabetes (T2D). This study included 20,712 T2D participants without prevalent diabetic microvascular complication (DMCs) and hematologic malignancy at baseline.
View Article and Find Full Text PDFJAMA Intern Med
January 2025
Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.
Importance: The optimal antiviral drug for treatment of nonsevere influenza remains unclear.
Objective: To compare effects of antiviral drugs for treating nonsevere influenza.
Data Sources: MEDLINE, Embase, CENTRAL, CINAHL, Global Health, Epistemonikos, and ClinicalTrials.
Eur J Epidemiol
January 2025
Department of Occupational Safety and Health, College of Public Health, China Medical University, No. 100, Section 1, Economic and Trade Road, Beitun District, Taichung, 406040, Taiwan, Republic of China.
Although several environmental factors may increase the risk of nervous system anomalies, the association between exposure to particulate matter with an aerodynamic diameter of ≤ 2.5 μm (PM) and nervous system anomalies is not completely understood. This study aimed to examine the association between expoure to PM and nervous system anomalies, including specific phenotypes during preconception and early pregnancy and determine the crucial time windows.
View Article and Find Full Text PDFJ Pers Soc Psychol
January 2025
Department of Psychology, University of Oslo.
The role of childhood activity level in personality development is still poorly understood. Using data from a prospective study following 939 children from age 1.5 to 16.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!