Despite the huge importance of friction in regulating movement in all natural and technological processes, the mechanisms underlying dissipation at a sliding contact are still a matter of debate. Attempts to explain the dependence of measured frictional losses at nanoscale contacts on the electronic degrees of freedom of the surrounding materials have so far been controversial. Here, it is proposed that friction can be explained by considering the damping of stick-slip pulses in a sliding contact. Based on friction force microscopy studies of La Sr MnO films at the ferromagnetic-metallic to a paramagnetic-polaronic conductor phase transition, it is confirmed that the sliding contact generates thermally-activated slip pulses in the nanoscale contact, and argued that these are damped by direct coupling into the phonon bath. Electron-phonon coupling leads to the formation of Jahn-Teller polarons and to a clear increase in friction in the high-temperature phase. There is neither evidence for direct electronic drag on the atomic force microscope tip nor any indication of contributions from electrostatic forces. This intuitive scenario, that friction is governed by the damping of surface vibrational excitations, provides a basis for reconciling controversies in literature studies as well as suggesting possible tactics for controlling friction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8061368 | PMC |
http://dx.doi.org/10.1002/advs.202003524 | DOI Listing |
Small
January 2025
State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, China.
Hydrogels demonstrate effective lubricating properties, but the underlying mechanisms at the nanoscale remain elucidated. In this study, a novel strategy is proposed by fabricating the hydrogel probes compatible with atomic force microscopy (AFM) to establish a superlubrication system based on the hydration interactions. The probe is made of polyethylene glycol diacrylate (PEGDA)-based hydrogel microspheres, which can achieve an extremely low friction coefficient of 0.
View Article and Find Full Text PDFActa Bioeng Biomech
September 2024
Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wrocław, Poland.
: The aim of this study was to evaluate the abrasive wear of the sliding screw-rod joint used in growth guidance system (GGS) stabilizers, allowing for the translation of the screw along the rod during the spinal growth process in a standard and modified system. : The study used single kinematic screw-rod pairs made of titanium alloy Ti6Al4V. Mechanical tests (cyclic loads) simulated the stabilizer's operation under conditions similar to actual use.
View Article and Find Full Text PDFCureus
December 2024
Department of Otolaryngology - Head and Neck Surgery, University of Fukui, Yoshida, JPN.
Introduction Effective communication is crucial for healthcare professionals, impacting patient care and interdisciplinary collaboration. However, medical education often lacks structured training in communication and presentation techniques. Herein, we evaluate the efficacy of structured workshops aimed at enhancing presentation skills among ear, nose, and throat (ENT) doctors through training in visual material design and concise verbal communication, including elevator pitches.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Equipment Maintenance and Remanufacturing Engineering, Academy of Army Armored Forces, Beijing 100072, China.
Tactile sensing is currently a research hotspot in the fields of intelligent perception and robotics. The method of converting external stimuli into electrical signals for sensing is a very effective strategy. Herein, we proposed a self-powered, flexible, transparent tactile sensor integrating sliding and proximity sensing (SFTTS).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Almazov National Medical Research Centre, 197341 St. Petersburg, Russia.
Several mutations of the uppermost arginine, R219, in the voltage-sensing sliding helix S4 of cardiac sodium channel Nav1.5 are reported in the ClinVar databases, but the clinical significance of the respective variants is unknown (VUSs). AlphaFold 3 models predicted a significant downshift of S4 in the R219C VUS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!