Donor-specific antibodies (DSAs) play a key role in chronic kidney allograft injury. Follicular T helper (Tfh) cells trigger the humoral alloimmune response and promote DSA generation, while T-follicular regulatory (Tfr) cells inhibit antibody production by suppressing Tfh and B cells. Interleukin (IL)-21 exerts a distinct effect on Tfh and Tfr. Here, we studied whether blocking IL-21R with anti-IL-21R monoclonal antibody (αIL-21R) changes the Tfh/Tfr balance and inhibits DSA generation. First, we investigated the impact of αIL-21R on CD4 T cell proliferation and apoptosis. The results showed that αIL-21R did not have cytotoxic effects on CD4 T cells. Next, we examined Tfh and regulatory T cells (Tregs) in an conditioned culture model. Naïve CD4 T cells were isolated from 3-month-old C57BL/6 mice and cultured in Tfh differentiation inducing conditions in presence of αIL-21R or isotype IgG and differentiation was evaluated by CXCR5 expression, a key Tfh marker. αIL-21R significantly inhibited Tfh differentiation. In contrast, under Treg differentiation conditions, FOXP3 expression was inhibited by IL-21. Notably, αIL-21R rescued IL-21-inhibited Treg differentiation. For investigation, a fully mismatched skin transplantation model was utilized to trigger the humoral alloimmune response. Consistently, flow cytometry revealed a reduced Tfh/Tfr ratio in recipients treated with αIL-21R. Germinal center response was evaluated by flow cytometry and lectin histochemistry. We observed that αIL-21R significantly inhibited germinal center reaction. Most importantly, DSA levels after transplantation were significantly inhibited by αIL-21R at different time points. In summary, our results demonstrate that αIL-21R shifts the Tfh/Tfr balance toward DSA inhibition. Therefore, αIL-21R may be a useful therapeutic agent to prevent chronic antibody mediated rejection after organ transplantation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8064115 | PMC |
http://dx.doi.org/10.3389/fimmu.2021.661580 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!