A Proposed Sentiment Analysis Deep Learning Algorithm for Analyzing COVID-19 Tweets.

Inf Syst Front

Artificial Intelligence and Information Systems Research Group, School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, UK.

Published: April 2021

With the rise in cases of COVID-19, a bizarre situation of pressure was mounted on each country to make arrangements to control the population and utilize the available resources appropriately. The swiftly rising of positive cases globally created panic, anxiety and depression among people. The effect of this deadly disease was found to be directly proportional to the physical and mental health of the population. As of 28 October 2020, more than 40 million people are tested positive and more than 1 million deaths have been recorded. The most dominant tool that disturbed human life during this time is social media. The tweets regarding COVID-19, whether it was a number of positive cases or deaths, induced a wave of fear and anxiety among people living in different parts of the world. Nobody can deny the truth that social media is everywhere and everybody is connected with it directly or indirectly. This offers an opportunity for researchers and data scientists to access the data for academic and research use. The social media data contains many data that relate to real-life events like COVID-19. In this paper, an analysis of Twitter data has been done through the R programming language. We have collected the Twitter data based on hashtag keywords, including COVID-19, coronavirus, deaths, new case, recovered. In this study, we have designed an algorithm called Hybrid Heterogeneous Support Vector Machine (H-SVM) and performed the sentiment classification and classified them positive, negative and neutral sentiment scores. We have also compared the performance of the proposed algorithm on certain parameters like precision, recall, F1 score and accuracy with Recurrent Neural Network (RNN) and Support Vector Machine (SVM).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8057010PMC
http://dx.doi.org/10.1007/s10796-021-10135-7DOI Listing

Publication Analysis

Top Keywords

social media
12
positive cases
8
twitter data
8
support vector
8
vector machine
8
data
6
covid-19
5
proposed sentiment
4
sentiment analysis
4
analysis deep
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!