A novel method for double encapsulation of C-phycocyanin using aqueous two phase systems for extension of shelf life.

J Food Sci Technol

Academy of Scientific and Innovative Research (AcSIR), Uttar Pradesh, Ghaziabad, India.

Published: May 2021

is having high nutritive value due to pigments such as chlorophyll-a, phycobiliproteins (especially phycocyanins) and carotenoids. In our present work, C-phycocyanin (C-PC) was extracted from dry biomass of . C-PC being heat sensitive, reiterates the need for additional protection during drying (micro encapsulation). Accordingly, a novel method employing aqueous two phase systems (ATPSs) as carrier materials to achieve double encapsulation was studied for the first time. PEG 4000/Potassium phosphate and PEG 6000/Dextran were used at already standardized tie line length, at different volume ratios (by varying the total phase composition). ATPS at each volume ratio acted as different carrier materials offering varied degree of heat protection during double encapsulation while maltodextrin, being the conventional carrier material, was used for comparison. The best results of spray dried powders using PEG (4% w/w)/Potassium phosphate salt (18%, w/w) and PEG (6%)/Dextran (10%, w/w) phase systems as carrier materials were compared with conventional encapsulation (MDX as a carrier material) and freeze dying as control. PEG/Dextran as a carrier material with volume ratio of 0.25 resulted in the highest retention of blue colour (b*value), purity (0.43) as well as yield (Y) of 94.99% w/w of C-PC, which could be stored for 6 months without much reduction from initial powder characteristics. From the overall results, it can be concluded that ATPS can be used as an effective carrier material for double encapsulation of biomolecules such as C-PC with additional benefit of enhancing the purity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8021679PMC
http://dx.doi.org/10.1007/s13197-020-04684-zDOI Listing

Publication Analysis

Top Keywords

double encapsulation
16
carrier material
16
phase systems
12
carrier materials
12
novel method
8
aqueous phase
8
volume ratio
8
carrier
7
encapsulation
6
double
4

Similar Publications

Microtia profoundly affects patients' appearance and psychological well-being. Tissue engineering ear cartilage scaffolds have emerged as the most promising solution for ear reconstruction. However, constructing tissue engineering ear cartilage scaffolds requires multiple passaging of chondrocytes, resulting in their dedifferentiation and loss of their special phenotypes and functions.

View Article and Find Full Text PDF

Tunable mechanical properties of PDMS-TMPTMA microcapsules for controlled release in coatings.

Soft Matter

January 2025

School of Materials Engineering, Purdue University, 701 West Stadium Ave, West Lafayette, IN 47907, USA.

Within coating formulations, microcapsules serve as vehicles for delivering compounds like catalysts and self-healing agents. Designing microcapsules with precise mechanical characteristics is crucial to ensure their contents' timely release and minimize residual shell fragments, thereby avoiding adverse impacts on the coating quality. With these constraints in mind, we explored the use of 1 cSt PDMS oil as a diluent (porogen) in trimethylolpropane trimethacrylate (TMPTMA)-based to fabricate microcapsules with customized mechanical properties and submicrometer debris size after shell breakup that can encapsulate a wide range of compounds.

View Article and Find Full Text PDF

Switch-Type Electrochemiluminescence Aptasensor for AFB1 Detection Based on CoS Quantum Dots Encapsulated in Co-LDH and a Ferrocene Quencher.

Anal Chem

December 2024

Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China.

Among the various aflatoxin B1 (AFB1) assays, performing accurate detection is difficult because false positives and false negatives are frequent due to limited sensitivity, expensive equipment, or inadequate pretreatment during operation. Here, an "off-on" switch-type electrochemiluminescence (ECL) aptasensor armed with cobalt-sulfur quantum dots was encapsulated in hollow cobalt-layered double hydroxide nanocages as an enhanced luminescent probe (Co-LDH@QDs), and a ferrocene-modified aptamer (Fc-APT) was used as a luminescent quencher. In general, when Fc-APT was hybridized with complementary DNA modified with a DNA nanotetrahedron, electron transfer between ferrocene and Co-LDH@QDs was facilitated, leading to efficient quenching of the ECL intensity into an "off" state in the absence of AFB1.

View Article and Find Full Text PDF

Multijunction photovoltaics (PVs) are gaining prominence owing to their superior capability of achieving power conversion efficiencies (PCEs) beyond the radiative limit of single-junction cells, where improving narrow bandgap tin-lead perovskites is critical for thin-film devices. With a focus on understanding the chemistry of tin-lead perovskite precursor solutions, we herein find that Sn(II) species dominate interactions with precursors and additives and uncover the exclusive role of carboxylic acid in regulating solution colloidal properties and film crystallisation, and ammonium in improving film optoelectronic properties. Materials that combine these two function groups, amino acid salts, considerably improve the semiconducting quality and homogeneity of perovskite films, surpassing the effect of the individual functional groups when introduced as part of separate molecules.

View Article and Find Full Text PDF

Oral protein drugs' delivery faces challenges due to multiple absorption barriers for macromolecules. Co-administration with permeation enhancers and encapsulation in nano-carriers are two promising strategies to enhance their oral absorption. Herein, the poly(lactic--glycolic acid) nanoparticles (PLGA NPs) are decorated with polyethylene glycol (PEG) and a traditional Chinese medicine-derived permeation enhancer borneol (BO) for oral insulin delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!