Objectives: The purpose of this study was to analyze the α-SiO content, composition, dispersion, morphology, and free radical content of dust between the alveolar and the workplace, to explore the possible changes in the properties (especially the pathogenicity) of dust after it enters the lung.
Methods: We collected the dust in the workplace in HANDAN Coal mine. They were selected by a 400 mesh sieve and was made a suspension of 50 mg/ml, which would be used to perfuse into the trachea of rats. When one week, four weeks, eight weeks, fourteen weeks, twenty weeks after perfusing, we harvested dust in rats alveolar through lung lavage for further processing.
Results: In the animal test, typical fibrous nodules appeared 20 weeks after dust exposure. No inflammatory reaction was observed in the saline group. The results of animal experiments showed that there was no significant difference in the content of α-SiO between dust in the workplace and the lung lavage ( > 0.05). The content of the Fe element gradually increased with dust exposure time. The 12 elements of Al, Mg, Si, Pb, Mn, Ni, Zn, Cu, Cr, Sb, Cd, and AS were reduced in the experiment group compared with the workplace group. The shape of the dust in the workplace was mostly spherical. The shape of the dust extracted from the lung lavage fluid was mostly blocky and angular, and a few dust edges were sharp, and more than 80% of the particle size was smaller than 5 μm, while less than 1% of the particle size was larger than 10 μm. The amount of hydroxyl radical released by lung lavage dust in phosphate buffer was higher than that of the workplace dust.
Conclusions: After the dust entered the alveoli, the content of α-SiO in the dust did not change with dust exposure time, while the content of elements in the dust, the morphology, and dispersion of the dust changed. The ability of dust in alveoli to produce hydroxyl radicals in phosphate buffer was higher than that in the workplace.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/01902148.2021.1916649 | DOI Listing |
J Air Waste Manag Assoc
January 2025
School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing, China.
Dust emissions from open-pit mining pose a significant threat to environmental safety and human health. Currently, the range of dust suppressants used in coal mining is limited, often failing to account for their suitability across various stockpiles. This oversight results in poor infiltration after application, leading to insufficient crust formation and reduced durability.
View Article and Find Full Text PDFFront Public Health
January 2025
Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.
The burden of disease and death attributable to environmental pollution is a growing public health challenge worldwide, particularly in developing countries. While the adverse effects of environmental pollution on oral health have garnered increasing attention, a comprehensive and systematic assessment remains lacking. This article delves into the intricate relationship between environmental pollution and oral health, highlighting significant impacts on various aspects such as dental caries, periodontal diseases, oral facial clefts, cancer, as well as other oral diseases.
View Article and Find Full Text PDFSci Rep
January 2025
Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran.
In this study, the contamination, ecological and human health risks as well as source apportionment of As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, and V in street dusts of different land-uses in Kermanshah, Iran were investigated. A total of 192 dust samples were taken from 16 sites and were analyzed for their elemental contents using ICP-OES. The computed mean values for the geo-accumulation index (I-geo) and the pollution index (PI) ranged from - 6.
View Article and Find Full Text PDFWaste Manag
January 2025
School of Chemical Engineering, University of Birmingham, B15 2TT, Birmingham, UK.
Recycling waste to produce liquid fuels for the automotive and aviation industries is a major global concern, especially in light of the ongoing energy crisis. Because waste is used in thermal conversion processes, the resulting liquid products often require additional processing to reduce their density and viscosity, and to remove oxygenated compounds or pollutants that hinder further utilization. Catalytic hydrogenolytic reactions such as hydrodeoxygenation (HDO) and hydrocracking (HC) have been extensively applied to upgrade pyrolysis oils.
View Article and Find Full Text PDFEnviron Sci Technol Lett
January 2025
EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Rd, Edinburgh, EH9 3FJ, United Kingdom.
Detecting and quantifying tire wear particles (TWPs) in the environment pose a unique environmental challenge due to their chemical complexity. There are emerging concerns around TWPs due to their potential high numbers of particles released, outnumbering microplastics, as well as the leaching of toxic additives such as 6-PPD which has been linked to the death of salmon even when present at very low levels (<0.1 μg/L).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!