AI Article Synopsis

  • Phase-contrast synchrotron-based X-ray imaging, using an X-ray interferometer, offers high sensitivity and resolution to visualize the detailed structures of biological soft tissues, including tumors.
  • This study compared images from this advanced X-ray technique with traditional histopathological methods in rat testicular tumors, confirming that X-ray imaging can reliably identify cancer cell characteristics based on nuclear chromatin density.
  • The technology allows for 3D imaging of tumors, revealing different tissue types and structures with a spatial resolution as fine as 26 μm, highlighting its potential for preclinical cancer research.

Article Abstract

Phase-contrast synchrotron-based X-ray imaging using an X-ray interferometer provides high sensitivity and high spatial resolution, and it has the ability to depict the fine morphological structures of biological soft tissues, including tumors. In this study, we quantitatively compared phase-contrast synchrotron-based X-ray computed tomography images and images of histopathological hematoxylin-eosin-stained sections of spontaneously occurring rat testicular tumors that contained different types of cells. The absolute densities measured on the phase-contrast synchrotron-based X-ray computed tomography images correlated well with the densities of the nuclear chromatin in the histological images, thereby demonstrating the ability of phase-contrast synchrotron-based X-ray imaging using an X-ray interferometer to reliably identify the characteristics of cancer cells within solid soft tissue tumors. In addition, 3-dimensional synchrotron-based phase-contrast X-ray computed tomography enables screening for different structures within tumors, such as solid, cystic, and fibrous tissues, and blood clots, from any direction and with a spatial resolution down to 26 μm. Thus, phase-contrast synchrotron-based X-ray imaging using an X-ray interferometer shows potential for being useful in preclinical cancer research by providing the ability to depict the characteristics of tumor cells and by offering 3-dimensional information capabilities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8085371PMC
http://dx.doi.org/10.1177/15330338211010121DOI Listing

Publication Analysis

Top Keywords

phase-contrast synchrotron-based
24
synchrotron-based x-ray
24
x-ray imaging
16
imaging x-ray
16
x-ray interferometer
16
x-ray computed
12
computed tomography
12
x-ray
11
ability phase-contrast
8
soft tissue
8

Similar Publications

Prefilled syringes (PFS) are primary packaging materials that offer convenience and safety for subcutaneous injection of parenteral drug solutions. However, an increasingly common problem with the trend towards higher drug concentrations is the clogging of the needle during storage due to evaporative water loss and consequent solidification of the drug. In contrast to all previous studies on this topic, this work focuses on pharmacokinetically relevant aspects and investigates the effects of needle clogging on the spatial distribution of the injected drug in the tissue.

View Article and Find Full Text PDF

Pulmonary veno-occlusive disease (PVOD) is a lethal variant of pulmonary hypertension. The degree of pulmonary arterial involvement varies. Here, we compare two PVOD patients who were transplanted at 8 years of age, whereof one is a homozygous mutation carrier.

View Article and Find Full Text PDF

Snap-frozen biopsies serve as a valuable clinical resource of archival material for disease research, as they enable a comprehensive array of downstream analyses to be performed, including extraction and sequencing of nucleic acids. Obtaining three-dimensional (3D) structural information before multi-omics is more challenging but can potentially allow for better characterization of tissues and targeting of clinically relevant cells. Conventional histological techniques are limited in this regard due to their destructive nature and the reconstruction artifacts produced by sectioning, dehydration, and chemical processing.

View Article and Find Full Text PDF

Synchrotron X-ray imaging of soft biological tissues - principles, applications and future prospects.

J Cell Sci

October 2024

European Molecular Biology Laboratory, Hamburg Unit c/o DESY, Notkestraße 85, 22607 Hamburg, Germany.

Synchrotron-based tomographic phase-contrast X-ray imaging (SRµCT or SRnCT) is a versatile isotropic three-dimensional imaging technique that can be used to study biological samples spanning from single cells to human-sized specimens. SRµCT and SRnCT take advantage of the highly brilliant and coherent X-rays produced by a synchrotron light source. This enables fast data acquisition and enhanced image contrast for soft biological samples owing to the exploitation of phase contrast.

View Article and Find Full Text PDF

Background And Aim: Full-thickness biopsies of the intestinal wall may be used to study and assess damage to the neurons of the enteric nervous system (ENS), that is, enteric neuropathy. The ENS is difficult to examine due to its localization deep in the intestinal wall and its organization with several connections in diverging directions. Histological sections used in clinical practice only visualize the sample in a two-dimensional way.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!