This article describes a miniature electron beam scanning system based on an octupole electrode as the key stage of the implementation of the MEMS electron microscope. The scanning system consists of a silicon electrode with a central hole, containing 8 properly powered elements and a special electronic system controlling voltage. Octupole electrode was made using MEMS technology. First, it was examined using computer simulations, and then the operation of the octupole system was tested using a reference electron beam in the SEM JEOL microscope. The scanning system parameters depend on the electron beam energy, distance between the octupole and the sample, and the applied voltage. It is possible either to obtain an octupole scanning system resolution of 27 nm (for electron beam energy E = 4 keV and octupole observation plane distance H = 1 mm) or a large scanning area up to 2.7 mm (E = 4 keV, H = 20 mm), without any significant distortion of the sample image. Subsequently, the first model of the MEMS electron microscope microcolumn was assembled, containing the field-emission cathode, an extraction electrode, a focusing electrode, an octupole electrode, and an anode. The first images of the observed hexagonal metal grid placed on the silicon anode were recorded inside a reference high vacuum chamber.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultramic.2021.113288DOI Listing

Publication Analysis

Top Keywords

electron beam
16
mems electron
12
electron microscope
12
scanning system
12
octupole electrode
12
octupole
8
beam energy
8
system
7
electron
7
electrode
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!