Early compositional studies of fungal EVs revealed a complex combination of biomolecules, including proteins, lipids, glycans, polysaccharides, nucleic acid and pigments, indicating that these compartments could be involved with multiple functions. Curiously, some of the activities attributed to fungal EVs were already attested experimentally and are implicated with contrasting effects in vitro and in vivo. For instance, the presence of virulence factors is correlated with increased pathogenic potential. Indeed, the administration to hosts of EVs along with some fungal pathogens seems to help the disease development. However, it has been clearly shown that immunization of insects and mice with fungal EVs can protect these animals against a subsequent infection. Fungal EVs not only influence the host response, as concluded from the observation that these compartments also work as messengers between fungal organisms. In this context, despite their size characterization, other physical properties of EVs are poorly known. For instance, their stability and half-life under physiological conditions can be a crucial parameter determining their long-distance effects. In this review, we will discuss the paradoxical and still unexploited functions and properties of fungal EVs that could be determinant for their biological functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molimm.2021.04.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!