A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pt-based (Zn, Cu) nanodendrites with enhanced catalytic efficiency and durability toward methanol electro-oxidation via trace Ir-doping engineering. | LitMetric

Pt-based alloy nanomaterials with nanodendrites (NDs) structures are efficient electrocatalysts for methanol oxidation reaction (MOR), however their durability is greatly limited by the issue of transition metals dissolution. In this work, a facile trace Ir-doping strategy was proposed to fabricate Ir-PtZn and Ir-PtCu alloy NDs catalysts in aqueous medium, which significantly improved the electrocatalytic activity and durability for MOR. The as-prepared Ir-PtZn/Cu NDs catalysts showed distinct dendrites structures with the averaged diameter of 4.1 nm, and trace Ir doping subsequently improved the utilization of Pt atoms and promoted the oxidation efficiency of methanol. The electrochemical characterizations further demonstrated that the obtained Ir-PtZn/Cu NDs possessed enhanced mass activities of nearly 1.23 and 1.28-fold higher than those of undoped PtZn and PtCu, and approximately 2.35 and 2.67-fold higher than that of Pt/C in acid medium. More excitingly, after long-term durability test, the proposed Ir-PtZn and Ir-PtCu NDs still retained about 88.9% and 91.6% of its initial mass activities, which further highlights the key role of Ir-doping in determining catalyst performance. This work suggests that trace Ir-doping engineering could be a promising way to develop advanced electrocatalysts toward MOR for direct methanol fuel cell (DMFC) applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2021.04.014DOI Listing

Publication Analysis

Top Keywords

trace ir-doping
12
ir-doping engineering
8
ir-ptzn ir-ptcu
8
nds catalysts
8
ir-ptzn/cu nds
8
mass activities
8
nds
5
pt-based nanodendrites
4
nanodendrites enhanced
4
enhanced catalytic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!