Efficiency limitation of thin film coated planar semiconductor thermal neutron detector.

Appl Radiat Isot

Department of Physics, North Carolina A&T State University, Greensboro, NC, 27411, USA. Electronic address:

Published: July 2021

Semiconductor thermal neutron detectors are increasingly been used in in-core thermal neutron flux measurements in nuclear reactors. One limitation of these detectors is that they suffer from low detection efficiency. In this work, the maximum efficiency of a planar structure thermal neutron detector was determined using two widely used computer codes: Geant4 and MCNP6. Diamond and SiC are used as based materials in this work because of their large electron-hole pair production efficiency which generally translates to high detection efficiency. The electron-hole pair production efficiency is the fraction of energy that goes into electron-hole pair creation and depends on the band-gap energy and the W-values. These two materials are also not susceptible to radiation damage which makes them suitable for high radiation environments such as nuclear reactors. Thermal neutron detection is achieved using B and LiF conversion layers coated on the surface of the detector. The maximum efficiency for B conversion layer was achieved at a thickness of 2 μm. The efficiency at this thickness is 5.57 ± 0.09% and 5.49±0.09% for diamond and silicon carbide, respectively. When LiF was used as a thermal neutron conversion layer, the maximum thickness of the conversion layer was determined to occur at 17 μm. The efficiency at this thickness is 5.47 ±0.06% and 5.38±0.06% for diamond and SiC, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apradiso.2021.109716DOI Listing

Publication Analysis

Top Keywords

thermal neutron
24
electron-hole pair
12
conversion layer
12
efficiency
9
semiconductor thermal
8
neutron detector
8
nuclear reactors
8
detection efficiency
8
maximum efficiency
8
diamond sic
8

Similar Publications

A Manufacturing Technique for Binary Clathrate Hydrates for Cold and Very Cold Neutron Production.

Materials (Basel)

January 2025

Institut Laue-Langevin (ILL), 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France.

Intense sources of very cold neutrons (VCNs) would be beneficial for various neutron scattering techniques and low-energy particle physics experiments. Binary clathrate hydrates hosting deuterated tetrahydrofuran (THF-d) and dioxygen show promise as potential moderators for such sources due to a rich spectrum of localized low-energy excitations of the encaged guest molecules. In this article, we present a reliable manufacturing technique for such hydrates.

View Article and Find Full Text PDF

To push upper boundaries of thermal conductivity in polymer composites, understanding of thermal transport mechanisms is crucial. Despite extensive simulations, systematic experimental investigation on thermal transport in polymer composites is limited. To better understand thermal transport processes, we design polymer composites with perfect fillers (graphite) and defective fillers (graphite oxide), using polyvinyl alcohol (PVA) as a matrix model.

View Article and Find Full Text PDF

Any experiment aiming to measure rare events, like Coherent Elastic neutrino-Nucleus Scattering (CE NS) or hypothetical Dark Matter scattering, via nuclear recoils in cryogenic detectors relies crucially on a precise detector calibration at sub-keV energies. The Crab collaboration developed a new calibration technique based on the capture of thermal neutrons inside the target crystal. Together with the Nucleus experiment, first measurements with a moderated Cf neutron source and a cryogenic detector were taken.

View Article and Find Full Text PDF

Transcriptome analysis of human oral squamous cancer SAS cells as an early response after boron neutron capture therapy.

Appl Radiat Isot

January 2025

Department of Molecular and Genomic Biomedicine, Nagasaki University Graduate School of Biomedical Sciences, 852-8523, Nagasaki, Japan; Central Radioisotope Division, National Cancer Center Research Institute, 104-0045, Tokyo, Japan; Division of BNCT, EPOC, National Cancer Center, Tokyo, Japan; Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, 104-0045, Tokyo, Japan. Electronic address:

Boron neutron capture therapy (BNCT) is based on nuclear reactions between thermal neutron and boron-10 preferentially distributed in the cancer cells. B-boronophenylalanine (BPA) is the approved drug for treatment of oral cancers for BNCT. However, the predictive biomarkers to evaluate therapeutic efficacy and side-effects have not been clarified yet.

View Article and Find Full Text PDF

We present new developments for an ab-initio model of the neutron relative biological effectiveness (RBE) in inducing specific classes of DNA damage. RBE is evaluated as a function of the incident neutron energy and of the depth inside a human-sized reference spherical phantom. The adopted mechanistic approach traces neutron RBE back to its origin, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!