It is reported that oxidative stress plays a detrimental role in the process of bone fracture healing. And pyrroloquinoline quinone (PQQ) is used as antioxidant. However, there is no report about whether PQQ supplementation can promote fracture healing by eliminating oxidative stress. To investigate the protective effect of PQQ on fracture healing, open mid-diaphyseal femur fractures model were created in sham, ovariectomized (OVX) mice and PQQ-treated OVX mice. Our results confirmed that PQQ played a preventive and protective role in OVX-induced delay of bone fracture healing by inhibiting oxidative stress, subsequently promoting osteoblastic bone formation and inhibiting osteoclastic bone resorption. The findings of this study not only revealed the mechanism of PQQ supplementation in promoting fracture healing, but also provide experimental and theoretical basis for the clinical application of PQQ in the treatment of bone fracture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2021.111598 | DOI Listing |
Microsurgery
January 2025
Pediatric Hand Surgery and Microsurgery Unit, Instituto de Investigación Sanitaria HM Hospitales, Barcelona, Spain.
Background: The periosteum is the main organ responsible for bone regeneration. Vascularized Periosteal Grafts (VPG) have demonstrated exceptional efficacy and speed in facilitating bone union among children with challenging bone healing conditions. Despite their promising results, the overall impact of these interventions has yet to be comprehensively evaluated through systematic review.
View Article and Find Full Text PDFObjective: This study aims to utilize bioinformatics and network pharmacology to identify the active components of Bushen Tiansui decoction (BSTSD) and elucidate its molecular mechanisms and targets in promoting delayed fracture healing.
Materials And Methods: Using various databases and tools, we identified 155 active compounds within BSTSD's herbal components. Key compounds such as eriodictyol and β-sitosterol were noted for their significant anti-inflammatory, antioxidant, and immunomodulatory effects, which are crucial for promoting fracture healing.
Langmuir
January 2025
Applied Systems Analysis & Research, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States.
Salt formations have been explored for the permanent isolation of spent nuclear fuel based on their high thermal conductivity, self-healing nature, and low hydraulic permeability to brine flow. Vacancy defect concentrations in salt complicate fracture mechanics not driven by dislocation dynamics and can influence the resulting surface structure. Classical molecular dynamic simulations were used to simulate tensile testing of salt crystals (halite) with vacancy defect concentrations of up to 0.
View Article and Find Full Text PDFJ Formos Med Assoc
January 2025
Department of Rehabilitation Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China. Electronic address:
Background: Osteoporosis fracture is a common and most serious complication of osteoporosis.
Hypothesis: This study sought to assess the level, the diagnostic potential, and the effect of circulating miR-4534 in osteoporotic fractures.
Methods: GSE74209 and GSE93883 were analyzed using GEO2R online tool for differentially expressed microRNAs in osteoporotic fractures.
Medicine (Baltimore)
November 2024
Graduate School, Heilongjiang University of Chinese Medicine, Haerbin, China.
The journey of bone repair is a lengthy process. Traditionally, oral or topical medications have been employed to facilitate healing, approaches that are not only costly but may also lead to adverse effects such as gastrointestinal damage. With advancements in electrophysiology, the significance of bioelectric activity in tissue repair has become increasingly prominent, thereby enhancing the focus on research into electroacupuncture (EA) for bone repair.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!