All-trans-retinoic acid (ATRA) is effective for preventing cancer and treating skin diseases and acute promyelocytic leukaemia (APL). These pharmacological effects of ATRA are mainly mediated by retinoid X receptors (RXRs) and retinoic acid receptors (RARs). This article provides a comprehensive overview of the clinical progress on and the molecular mechanisms of ATRA in the treatment of APL. ATRA can promote the transcriptional activation of differentiation-related genes and regulate autophagy by inhibiting mTOR, which results in anti-APL effects. In detail, the structures, pharmacological effects, and clinical studies of 68 types of ATRA analogues are described. These compounds have excellent antitumour therapeutic potential and could be used as lead compounds for further development and research.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2021.113451DOI Listing

Publication Analysis

Top Keywords

all-trans-retinoic acid
8
acid atra
8
atra analogues
8
acute promyelocytic
8
promyelocytic leukaemia
8
pharmacological effects
8
atra
6
overview all-trans-retinoic
4
analogues structures
4
structures activities
4

Similar Publications

The 3D printing of human tissue constructs requires carefully designed bioinks to support the growth and function of cells. Here it is shown that an additional parameter is how drug-releasing microparticles affect the material properties of the scaffold. A microfluidic platform is used to create all-trans retinoic acid (atRA) polycaprolactone (PCL) microparticles with a high encapsulation efficiency (85.

View Article and Find Full Text PDF

Acute promyelocytic leukemia (APL) is driven by the specific fusion gene PML-RARA produced by chromosomal translocation. Three classic isoforms, L, V, and S, are found in more than 95% of APL patients. However, atypical PML-RARA isoforms are usually associated with uncertain disease progression and treatment prognosis.

View Article and Find Full Text PDF

Study protocol: multi-centre, randomised controlled clinical trial exploring stromal targeting in locally advanced pancreatic cancer; STARPAC2.

BMC Cancer

January 2025

Barts Cancer Institute and Wolfson Institute of Public Health, Mary University of London, John Vane Science Centre, Charterhouse Square, London, Queen, EC1M 6BQ, UK.

Background: Pancreatic cancer (PDAC: pancreatic ductal adenocarcinoma, the commonest form), a lethal disease, is best treated with surgical excision but is feasible in less than a fifth of patients. Around a third of patients presentlocally advanced, inoperable, non-metastatic (laPDAC), whose stadrd of care is palliative chemotherapy; a small minority are down-sized sufficiently to enable surgical excision. We propose a phase II clinical trial to test whether a combination of standard chemotherapy (gemcitabine & nab-Paclitaxel: GEM-NABP) and repurposing All Trans Retinoic Acid (ATRA) to target the stroma may extend progression-free survival and enable successful surgical resection for patients with laPDAC, since data from phase IB clinical trial demonstrate safety of GEM-NABP-ATRA combination to patients with advanced PDAC with potential therapeutic benefit.

View Article and Find Full Text PDF

Acanthosis nigricans (AN) is a dermatological condition, marked by hyperpigmentation and skin thickening, frequently affecting body folds like the axillae. Treatment options for axillary hyperpigmentation remain underexplored. This study evaluated the efficacy of 0.

View Article and Find Full Text PDF

Influence of macrophages and neutrophilic granulocyte-like cells on crystalline silica-induced toxicity in human lung epithelial cells.

Toxicol Res (Camb)

February 2025

Département Toxicologie et Biométrologie, Institut National de Recherche et de Sécurité pour la prévention des accidents du travail et des maladies professionnelles (INRS), 1 rue du Morvan, 54519 Vandœuvre-lès-Nancy, France.

In many industrial activities, workers may be exposed by inhalation to particles that are aerosolized, To predict the human health hazard of these materials, we propose to develop a co-culture model (macrophages, granulocytes, and alveolar epithelial cells) designed to be more representative of the inflammatory pulmonary response occurring in vivo. Phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 cells were used as macrophages, All-trans retinoic acid (ATRA)-differentiated HL60 were used as granulocytes and A549 were used as epithelial alveolar type II cells. A crystalline silica sample DQ12 was used as a prototypical particle for its capabilities to induce DNA damage, inflammatory response, and oxidative stress in epithelial cells; its polyvinylpyridine-N-oxide (PVNO)-surface modified counterpart was also used as a negative particulate control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!