There are different methods for predicting streamflow, and, recently machine learning has been widely used for this purpose. This technique uses a wide set of covariables in the prediction process that must undergo a selection to increase the precision and stability of the models. Thus, this work aimed to analyze the effect of covariable selection with Recursive Feature Elimination (RFE) and Forward Feature Selection (FFS) in the performance of machine learning models to predict daily streamflow. The study was carried out in the Piranga river basin, located in the State of Minas Gerais, Brazil. The database consisted of an 18-year-old historical series (2000-2017) of streamflow data at the outlet of the basin and the covariables derived from the streamflow of affluent rivers, precipitation, land use and land cover, products from the MODIS sensors, and time. The highly correlated covariables were eliminated and the selection of covariables by the level of importance was carried out by the RFE and FFS methods for the Multivariate Adaptive Regression (EARTH), Multiple Linear Regression (MLR), and Random Forest (RF) models. The data were partitioned into two groups: 75% for training and 25% for validation. The models were run 50 times and had their performance evaluated by the Nash Sutcliffe efficiency coefficient (NSE), Determination coefficient (R), and Root of Mean Square Error (RMSE). The three models tested showed satisfactory performance with both covariable selection methods, however, all of them proved to be inaccurate for predicting values associated with maximum streamflow events. The use of FFS, in most cases, improved the performance of the models and reduced the number of selected covariables. The use of machine learning to predict daily streamflow proved to be efficient and the use of FFS in the selection of covariables enhanced this efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2021.112625 | DOI Listing |
Microbiome
January 2025
Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, Jena, 07745, Germany.
Background: The pathogenesis of non-alcoholic fatty liver disease (NAFLD) with a global prevalence of 30% is multifactorial and the involvement of gut bacteria has been recently proposed. However, finding robust bacterial signatures of NAFLD has been a great challenge, mainly due to its co-occurrence with other metabolic diseases.
Results: Here, we collected public metagenomic data and integrated the taxonomy profiles with in silico generated community metabolic outputs, and detailed clinical data, of 1206 Chinese subjects w/wo metabolic diseases, including NAFLD (obese and lean), obesity, T2D, hypertension, and atherosclerosis.
J Transl Med
January 2025
Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3052, Australia.
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex and multifaceted disorder that defies simplistic characterisation. Traditional approaches to diagnosing and treating ME/CFS have often fallen short due to the condition's heterogeneity and the lack of validated biomarkers. The growing field of precision medicine offers a promising approach which focuses on the genetic and molecular underpinnings of individual patients.
View Article and Find Full Text PDFGenome Med
January 2025
Blizard Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK.
Background: Senescence classification is an acknowledged challenge within the field, as markers are cell-type and context dependent. Currently, multiple morphological and immunofluorescence markers are required. However, emerging scRNA-seq datasets have enabled an increased understanding of senescent cell heterogeneity.
View Article and Find Full Text PDFCancer Cell Int
January 2025
Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China.
Background: Patients with lung adenocarcinoma (LUAD) receiving drug treatment often have an unpredictive response and there is a lack of effective methods to predict treatment outcome for patients. Dendritic cells (DCs) play a significant role in the tumor microenvironment and the DCs-related gene signature may be used to predict treatment outcome. Here, we screened for DC-related genes to construct a prognostic signature to predict prognosis and response to immunotherapy in LUAD patients.
View Article and Find Full Text PDFBMC Med Genomics
January 2025
Department of Anaesthesiology, Centre of Head and Orthopedics, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej 6, Copenhagen, 2100, Denmark.
Background: Sepsis and shock are common complications of necrotising soft tissue infections (NSTI). Sepsis encompasses different endotypes that are associated with specific immune responses. Hyperbaric oxygen (HBO) treatment activates the cells oxygen sensing mechanisms that are interlinked with inflammatory pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!