Physiological and molecular insights involved in silicon uptake and transport in ryegrass.

Plant Physiol Biochem

Center of Plant-Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar, 01145, Temuco, Chile; Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar, 01145, Temuco, Chile. Electronic address:

Published: June 2021

The silicon (Si) uptake system of two ryegrass (Lolium perenne L.) cultivars was characterised by assessing the concentration- and time-dependent kinetics. Additionally, a Si transporter gene was isolated from ryegrass and their expression pattern was analysed. The concentration-dependent kinetics was examined in Jumbo and Nui cultivars supplied with 0, 0.5, 1.0, 2.0, and 4.0 mM Si and harvested at 24 h and 21 d. The time-dependent kinetics was evaluated at 0, 0.5, or 2 mM Si doses after 0, 3, 6, 9, 12, and 24 h. RACE-PCR was performed to isolate a full-length sequence codifying for a Si transporter, and semi-quantitative and quantitative RT-PCR was used to analyse its expression pattern. Differential Si uptake between ryegrass cultivars was found. Moreover, Lineweaver-Burk linearization showed similar V values between cultivars; however, different K suggested that Jumbo and Nui may have different affinities for silicic acid. The dissimilarities in K between cultivars might involve either the differential contribution of known proteins responsible for Si uptake and transport or the involvement of undiscovered Si transporters. We identified a putative Si transporter from ryegrass Nui (LpLsi1), which was only expressed in roots and down-regulated by Si supply. The predicted amino acid sequence of LpLsi1 did not only show a high similarity and close phylogenetic relationship with monocot Si influx transporters but also indicated that it is a membrane protein possessing a high conservation of domains essential for silicic acid selectivity. Our findings provide evidence of LpLsi1 in ryegrass, which supports its high Si accumulation capacity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2021.04.013DOI Listing

Publication Analysis

Top Keywords

silicon uptake
8
uptake transport
8
time-dependent kinetics
8
expression pattern
8
jumbo nui
8
silicic acid
8
ryegrass
6
cultivars
5
physiological molecular
4
molecular insights
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!