The production of nanomaterials continues its rapid growth; however, newly manufactured nanomaterials' environmental and health safety are among the most significant concerns. A safety assessment is usually a lengthy and costly process, so computational studies are often used to complement experimental testing. One of the most time-efficient techniques is structure-activity relationships (SAR) modeling. In this project, we analyzed the Sustainable Nanotechnology (S2NANO) dataset that contains 574 experimental cell viability and toxicity datapoints for AlO, CuO, FeO, FeO, SiO, TiO, and ZnO measured in different conditions. We aimed to develop classification- and regression-based structure-activity relationship models using quasi-SMILES molecular representation. Introduced quasi-SMILES took into consideration all available information, including structural features of nanoparticles (molecular structure, core size, etc.) and related experimental parameters (cell line, dose, exposure time, assay, hydrodynamic size, surface charge, etc.). Resultant regression models demonstrated sufficient predictive power, while classification models demonstrated higher accuracy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.etap.2021.103665 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!