The phosphatidylserine flippase β-subunit Tmem30a is essential for normal insulin maturation and secretion.

Mol Ther

Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, Qinghai 810008, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072 China; Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan 610072, China; Department of Ophthalmology, First People's Hospital of Shangqiu, Shangqiu, Hennan 476100, China. Electronic address:

Published: September 2021

The processing, maturation, and secretion of insulin are under precise regulation, and dysregulation causes profound defects in glucose handling, leading to diabetes. Tmem30a is the β subunit of the phosphatidylserine (PS) flippase, which maintains the membrane asymmetric distribution of PS. Tmem30a regulates cell survival and the localization of subcellular structures and is thus critical to the normal function of multiple physiological systems. Here, we show that conditional knockout of Tmem30a specifically in pancreatic islet β cells leads to obesity, hyperglycemia, glucose intolerance, hyperinsulinemia, and insulin resistance in mice, due to insufficient insulin release. Moreover, we reveal that Tmem30a plays an essential role in clathrin-mediated vesicle transport between the trans Golgi network (TGN) and the plasma membrane (PM), which comprises immature secretory granule (ISG) budding at the TGN. We also find that Tmem30a deficiency impairs clathrin-mediated vesicle budding and thus blocks both insulin maturation in ISGs and the transport of glucose-sensing Glut2 to the PM. Collectively, these disruptions compromise both insulin secretion and glucose sensitivity, thus contributing to impairments in glucose-stimulated insulin secretion. Taken together, our data demonstrate an important role of Tmem30a in insulin maturation and glucose metabolic homeostasis and suggest the importance of membrane phospholipid distribution in metabolic disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8417432PMC
http://dx.doi.org/10.1016/j.ymthe.2021.04.026DOI Listing

Publication Analysis

Top Keywords

insulin maturation
12
phosphatidylserine flippase
8
insulin
8
maturation secretion
8
clathrin-mediated vesicle
8
insulin secretion
8
tmem30a
7
flippase β-subunit
4
β-subunit tmem30a
4
tmem30a essential
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!