Amiloride and certain of its derivatives are effective inhibitors of Na/H antiporters and of epithelial Na channels. We describe a simple method for the preparation of a variety of pharmacologically active 6-iodoamiloride derivatives that are labeled with 125I at high specific radioactivity. 6-Dechloroamiloride derivatives (bearing a hydrogen atom instead of the chlorine at the 6 position of the amiloride molecule) are reacted with 125ICl, prepared by the oxidation of the iodide in Na125I preparations. The 125I-labeled derivatives are separated from free 125I by anion exchange chromatography, or purified by thin layer chromatography. Both 6-dechloroamiloride and 5-(N-alkyl)-6-dechloroamiloride derivatives can be labeled by this method, with yields varying between 10 and 70%, depending on the ICl concentration and the structure of the 5-N-alkyl group. Efficient radiolabeling at high specific radioactivity also depends on the use of freshly prepared batches of 125I. Using carrier-free 125I, [125I]6-iodoamiloride and [125I]6-iodo-5-(N-tert-butyl)amiloride were prepared with yields of 27 and 22%, respectively. Potential applications of the 125I-labeled amiloride derivatives include ligand binding and affinity labeling experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0003-2697(88)90090-5 | DOI Listing |
Sci Transl Med
December 2024
Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
Inflammatory skin disease is characterized by a pathologic interplay between skin cells and immunocytes and can result in disfiguring cutaneous lesions and systemic inflammation. Immunosuppression is commonly used to target the inflammatory component; however, these drugs are often expensive and associated with side effects. To identify previously unidentified targets, we carried out a nonbiased informatics screen to identify drug compounds with an inverse transcriptional signature to keratinocyte inflammatory signals.
View Article and Find Full Text PDFMol Biol Cell
January 2025
Department of Developmental and Cell Biology, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92617.
Macropinocytosis is reported to fuel tumor growth and drug resistance by allowing cancer cells to scavenge extracellular macromolecules. However, accurately defining the role of macropinocytosis in cancer depends on our ability to selectively block this process. 5-(N-ethyl-N-isopropyl)-amiloride (EIPA) is widely used to inhibit macropinocytosis but affects multiple Na/H exchangers (NHE) that regulate cytoplasmic and organellar pH.
View Article and Find Full Text PDFCommun Biol
November 2024
Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria.
Int J Mol Sci
October 2024
Department of Surgery, University of Melbourne, Studley Road, Heidelberg, VIC 3084, Australia.
Arsenic trioxide (ATO) has been shown to inhibit pancreatic cancer (PC) cell growth and to promote the inhibitory effects of gemcitabine (Gem) on PC . However, the high toxicity of ATO associated with the required high doses and indiscriminate targeting has limited its clinical application. This study aimed to determine whether coupling arsenic to a tumor homing peptide would increase the inhibitory potency against PC cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!