We have reported previously that retinal pigment epithelium (RPE) differentiated from induced pluripotent stem cells (iPSC) generated from fibroblasts of patients with age-related macular degeneration (AMD) exhibit a retinal degenerative disease phenotype and a distinct transcriptome compared to age-matched controls. Since the genetic composition of the iPSC and RPE are inherited from fibroblasts, we investigated whether differential behavior was present in the parental fibroblasts and iPSC prior to differentiation of the cell lines into RPE. Principal component analyses revealed significant overlap (essentially no differences) in the transcriptome of fibroblasts between AMD and controls. After reprogramming, there was no significant difference in the transcriptome of iPSC generated from AMD versus normal donors. In contrast, the transcriptome of RPE derived from iPSC segregated into two distinct clusters of AMD-derived cells versus controls. Interestingly, mitochondrial dysfunction in AMD-derived RPE was evident after approximately two months in culture. Moreover, these differences in mitochondrial dysfunction were not evident in the parental fibroblasts and iPSC. This study demonstrates an altered transcriptome and impaired mitochondrial function in RPE derived from AMD patients versus controls, and demonstrates these differences are not present in the original fibroblasts or iPSC. These results suggest that pathology in AMD is triggered upon differentiation of parent cells into RPE. More study of this phenomenon could advance the current understandings of the etiology of AMD and the development of novel therapeutic targets.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exer.2021.108576DOI Listing

Publication Analysis

Top Keywords

fibroblasts ipsc
12
altered transcriptome
8
patients age-related
8
age-related macular
8
macular degeneration
8
retinal pigment
8
pigment epithelium
8
ipsc generated
8
parental fibroblasts
8
rpe derived
8

Similar Publications

This paper introduces the current status of Seoul National University Hospital Dementia Brain Bank (SNUH-DBB), focusing on the concordance rate between clinical diagnoses and postmortem neuropathological diagnoses. We detail SNUH-DBB operations, including protocols for specimen handling, induced pluripotent stem cells (iPSC) and cerebral organoids establishment from postmortem dural fibroblasts, and adult neural progenitor cell cultures. We assessed clinical-neuropathological diagnostic concordance rate.

View Article and Find Full Text PDF

Placentation disorders, including severe preeclampsia and fetal growth restriction, have their origins in early pregnancy, whereas symptoms typically present later on. To investigate the pathogenesis of these diseases, there is a need for a reliable in vitro model system of early placenta development with known pregnancy outcomes. Therefore, we optimized the generation of human induced trophoblast stem cells (iTSCs) from term umbilical cord, enabling non-invasive collection of patient-derived material immediately after birth.

View Article and Find Full Text PDF

PGK1 (phosphoglycerate kinase-1) is required for ATP production in the body. Mutation in the PGK1 gene causes a rare, inherited metabolic disorder causing deficiency of enzyme PGK1, leading to hemolytic anemia, neurological symptoms, and muscle weakness. We generated induced pluripotent stem cells (iPSCs) from a patient carrying a PGK1 variant by isolating fibroblasts from skin punch biopsy and reprogramming using CytoTune iPS 2.

View Article and Find Full Text PDF

Generation and heterozygous repair of human iPSC lines from two individuals with the neurodevelopmental disorder, TRAPPC4 deficiency.

Stem Cell Res

February 2025

Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia. Electronic address:

A rare neurodevelopmental disorder has been linked to a well-conserved splice site variant in the TRAPPC4 gene (c.454 + 3A > G), which causes mis-splicing of TRAPPC4 transcripts and reduced levels of TRAPPC4 protein. Patients present with severe progressive neurological symptoms including seizures, microcephaly, intellectual disability and facial dysmorphism.

View Article and Find Full Text PDF

Human induced pluripotent stem cell (hiPSC)-based disease modeling can be successfully recapitulated to mimic disease characteristics across various human pathologies. Glaucoma, a progressive optic neuropathy, primarily affects the retinal ganglion cells (RGCs). While multiple groups have successfully generated RGCs from non-diseased hiPSCs, producing RGCs from glaucomatous human samples holds significant promise for understanding disease pathology by revealing patient-specific disease signatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!