Medical applications such as plasma assisted gene transfer is a minimally invasive approach that can substantially reduce potential discomfort of treated area. Atmospheric pressure plasma discharge is an effective approach to deliver plasmid DNA for in vitro and in vivo applications. We investigated plasma assisted delivery in vitro in mouse melanoma cells (B16F10) using a novel surface plasma device, which is operated in air. We evaluated the influence of applied voltage and distance between the surface device and cell monolayer. We found no significant effect on the viability of cells. Highest expression following delivery of a plasmid encoding green fluorescent protein was achieved with an applied voltage of 11.25 kV at a 2 mm distance and 5 s exposure time. To better understand the influence of oxidative damages and stress on cells after plasma delivery, a mRNA expression study was performed. Our results indicated that TNFα mRNA was significantly upregulated. The mRNA response may be attributed to the RONS generated by plasma; however, this mRNA upregulation was not adequate to be reflected in a coordinate protein upregulation. From the results reported here, it is clear that this novel plasma device could be used for plasmid delivery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8187306 | PMC |
http://dx.doi.org/10.1016/j.bioelechem.2021.107816 | DOI Listing |
Sci Rep
January 2025
Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand.
An ideal chemotherapeutic agent damages DNA, specifically in cancer cells, without harming normal cells. Recently, we used Box A of HMGB1 plasmid as molecular scissors to produce DNA gaps in normal cells. The DNA gap relieves DNA tension and increases DNA strength, preventing DNA double-strand breaks (DSBs).
View Article and Find Full Text PDFJ Biol Chem
January 2025
Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada; McGill University Health Center, Montreal, Quebec H3A 1A3, Canada. Electronic address:
Site-directed mutagenesis is a fundamental tool indispensable for protein and plasmid engineering. An important technological question is how to achieve the efficiency at the ideal level of 100%. Based on complementary primer pairs, the QuickChange method has been widely used, but it requires significant improvements due to its low efficiency and frequent unwanted mutations.
View Article and Find Full Text PDFPharmaceutics
January 2025
Integrative Health and Environmental Analysis Research Laboratory, Department of Analytical Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary.
Cyclodextrins can serve as carriers for various payloads, utilizing their capacity to form unique host-guest inclusion complexes within their cavity and their versatile surface functionalization. Recently, cationic cyclodextrins have gained considerable attention, as they can improve drug permeability across negatively charged cell membranes and efficiently condense negatively charged nucleic acid due to electrostatic interactions. This review focuses on state-of-the-art and recent advances in the construction of cationic cyclodextrin-based delivery systems.
View Article and Find Full Text PDFPharmaceutics
December 2024
Gennova Biopharmaceuticals Ltd., ITBT Park, Hinjawadi Phase 2 Rd, Hinjewadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune 411057, India.
: The nucleic acid-based product (NAP) portfolio is expanding continuously and provides safer curative options for many disease indications. Nucleic acid-based products offer several advantages compared to proteins and virus-based products. They represent an emerging field; thus, their quality control and regulatory landscape is evolving to ensure adequate quality and safety.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Türkiye.
Gene II Protein (Gp2/P2) is a nicking enzyme of the M13 bacteriophage that plays a role in the DNA replication of the viral genome. P2 recognizes a specific sequence at the f1 replication origin and nicks one of the strands and starts replication. This study was conducted to address the limitations of previous experiments, improve methodologies, and precisely determine the biochemical activity conditions of the P2 enzyme in vitro.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!