Antiviral therapeutics is one effective avenue to control and end this devastating COVID-19 pandemic. The viral RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 has been recognized as a valuable target of antivirals. However, the cell-free SARS-CoV-2 RdRp biochemical assay requires the conversion of nucleotide prodrugs into the active triphosphate forms, which regularly occurs in cells yet is a complicated multiple-step chemical process in vitro, and thus hinders the utility of this cell-free assay in the rapid discovery of RdRp inhibitors. In addition, SARS-CoV-2 exoribonuclease provides the proof-reading capacity to viral RdRp, thus creates relatively high resistance threshold of viral RdRp to nucleotide analog inhibitors, which must be examined and evaluated in the development of this class of antivirals. Here, we report a cell-based assay to evaluate the efficacy of nucleotide analog compounds against SARS-CoV-2 RdRp and assess their tolerance to viral exoribonuclease-mediated proof-reading. By testing seven commonly used nucleotide analog viral polymerase inhibitors, Remdesivir, Molnupiravir, Ribavirin, Favipiravir, Penciclovir, Entecavir and Tenofovir, we found that both Molnupiravir and Remdesivir showed the strong inhibition of SARS-CoV-2 RdRp, with EC50 value of 0.22 μM and 0.67 μM, respectively. Moreover, our results suggested that exoribonuclease nsp14 increases resistance of SARS-CoV-2 RdRp to nucleotide analog inhibitors. We also determined that Remdesivir presented the highest resistance to viral exoribonuclease activity in cells. Therefore, we have developed a cell-based SARS-CoV-2 RdRp assay which can be deployed to discover SARS-CoV-2 RdRp inhibitors that are urgently needed to treat COVID-19 patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059291 | PMC |
http://dx.doi.org/10.1016/j.antiviral.2021.105078 | DOI Listing |
Virol J
January 2025
Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, Guangdong, 518118, China.
Background: SHEN26 (ATV014) is an oral RNA-dependent RNA polymerase (RdRp) inhibitor with potential anti-SARS-CoV-2 activity. Safety, tolerability, and pharmacokinetic characteristics were verified in a Phase I study. This phase II study aimed to verify the efficacy and safety of SHEN26 in COVID-19 patients.
View Article and Find Full Text PDFPathogens
January 2025
Laboratório de Virologia e Rickettsioses, Faculdade de Medicina Veterinária, Universidade Federal de Mato Grosso, Fernando Correa da Costa, 2367, Cuiabá 78060-900, Brazil.
Coronaviruses (CoV) infect a wide variety of hosts, causing epidemics in humans, birds, and mammals over the years. Bats (order Chiroptera) are one of the natural hosts of the Coronaviridae family. They represent 40% of the total number of mammal species in the Pantanal, a biodiversity hotspot in South America.
View Article and Find Full Text PDFbioRxiv
January 2025
Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
Coronaviruses (CoV) encode sixteen non-structural proteins (nsps), most of which form the replication-transcription complex (RTC). The RTC contains a core composed of one nsp12 RNA-dependent RNA polymerase (RdRp), two nsp8s and one nsp7. The core RTC recruits other nsps to synthesize all viral RNAs within the infected cell.
View Article and Find Full Text PDFTurk J Pharm Sci
January 2025
Fenerbahçe University Faculty of Pharmacy, Department of Pharmaceutical Chemistry, İstanbul, Türkiye.
Introduction: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), from the family Coronaviridae, is the seventh known coronavirus to infect humans and cause acute respiratory syndrome. Although vaccination efforts have been conducted against this virus, which emerged in Wuhan, China, in December 2019 and has spread rapidly around the world, the lack of an Food and Drug Administration-approved antiviral agent has made drug repurposing an important approach for emergency response during the COVID-19 pandemic. The aim of this study was to investigate the potential of H1-antihistamines as antiviral agents against SARS-CoV-2 RNA-dependent RNA polymerase enzyme.
View Article and Find Full Text PDFJ Mol Graph Model
January 2025
School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; Department of Health Sciences, University of York, York, YO10 5DD, UK. Electronic address:
The novel coronavirus disease (COVID-19) pandemic has resulted in 777 million confirmed cases and over 7 million deaths worldwide, with insufficient treatment options. Innumerable efforts are being made around the world for faster identification of therapeutic agents to treat the deadly disease. Post Acute Sequelae of SARS-CoV-2 infection or COVID-19 (PASC), also called Long COVID, is still being understood and lacks treatment options as well.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!