A green fabrication method of poly (lactic acid) perforated membrane via tuned crystallization and gas diffusion process.

Int J Biol Macromol

Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Published: July 2021

Poly (lactic acid) (PLA) perforated membrane is typically obtained through the solvent-volatilization-induced or non-solvent-induced phase separation (NIPS) method. However, the residual organic solvents would unavoidably limit the application of PLA perforated membrane in biomedical and high-end water purification fields. Herein, an innovative solution-free method was proposed for preparing the PLA perforated membrane via a simple and environmentally friendly way. We have successfully fabricated the PLA perforated membrane using a physical foaming technique with CO as the blowing agent. By tuning the primary film thickness, saturation pressure, and foaming temperature, PLA perforated membrane's cell morphology could be accordingly adjusted. The PLA perforated membrane with a highly-ordered straight pore channel and high open cell content (OCC) approximately 72% was obtained under a mild condition. The formation mechanism of the PLA perforated membrane was discussed via the interaction of crystallization behavior and gas diffusion process. This green and solvent-free PLA perforated membrane possesses great potential for use in areas like the tissue engineering and high-end water purification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2021.04.105DOI Listing

Publication Analysis

Top Keywords

perforated membrane
32
pla perforated
32
perforated
9
poly lactic
8
lactic acid
8
membrane
8
gas diffusion
8
diffusion process
8
pla
8
high-end water
8

Similar Publications

Transalveolar sinus floor elevation (TSFE) is a surgical technique for the placement of dental implants in patients with reduced height of the maxillary posterior alveolar bone. This study aims to demonstrate the clinical outcomes of TSFE using the minimal invasive sinus elevation (MISE) technique in partially and totally edentulous maxillary patients. This prospective clinical study followed STROBE guidelines.

View Article and Find Full Text PDF

Nano-Perforated Silicon Membrane with Monolithically Integrated Buried Cavity.

Micromachines (Basel)

January 2025

DTU Nanolab, National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Ørsteds Plads B347, 2800 Kongens Lyngby, Denmark.

A wafer-scale process for fabricating monolithically suspended nano-perforated membranes (NPMs) with integrated support structures into silicon is developed. Existing fabrication methods are suitable for many desired geometries, but face challenges related to mechanical robustness and fabrication complexity. We demonstrate a process that utilizes the cyclic deposit, remove, etch, and multi-step (DREM) process for directional etching of high-aspect-ratio (HAR) 300 nm in diameter nano-pores of 700 nm pitch.

View Article and Find Full Text PDF

Introduction: This study explored the effects of four different surgical methods in the treatment of cesarean scar pregnancy (CSP).

Methods: In this multicenter retrospective analysis of 359 patients, the surgical indices, the time taken for the serum human chorionic gonadotropin level to return to normal, the recovery time of menstruation, and the incidence of postoperative adverse reactions were comparatively analyzed. The clinical efficacies of various preoperative treatment methods to block the blood supply to CSP tissues and those of four different surgical methods to treat CSP, namely, curettage, hysteroscopic surgery, laparoscopic surgery, and vaginal surgery, were evaluated in this study.

View Article and Find Full Text PDF

Purpose: This study evaluates the effectiveness of the inverted internal limiting membrane (ILM) flap technique during vitrectomy for treating macular hole-induced retinal detachment (MHRD) in high myopia patients, a challenging complication for vitreoretinal surgeons due to its treatment complexity.

Methods: We conducted a prospective study analyzing 92 eyes diagnosed with MHRD, all undergoing vitrectomy using the inverted ILM flap technique between February 2022 and September 2024. Successful surgery was defined as achieving retinal reattachment, macular hole closure, and improvement in visual acuity by the 12-month postoperative follow-up.

View Article and Find Full Text PDF

Recovery of Iodine in the Gaseous Phase Using the Silicone Hollow Fiber Membrane Module.

Membranes (Basel)

January 2025

Godo Shigen Co., Ltd., 1545-1 Nanaido, Chosei-mura, Chiba 299-4333, Japan.

Iodine, being an important resource, must be recovered and reused. Iodine is not only attracted to the hydrophobic silicone membrane but also easily vaporized. In this study, we explored the use of five types of silicone hollow fiber membrane modules (SFMMs) for separating iodine in the gaseous phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!