An optimized method for adult zebrafish brain-tissue dissociation that allows access mitochondrial function under healthy and epileptic conditions.

Brain Res

Laboratory of Cellular Neurochemistry - Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Porto Alegre, RS, Brazil.

Published: August 2021

Mitochondria play key roles in brain metabolism. Not surprisingly, mitochondria dysfunction is a ubiquitous cause of neurodegenerative diseases. In turn, acquired forms of epilepsy etiology is specifically intriguing since mitochondria function and dysfunction remain not completely enlightened. Investigation in the field includes models of epileptic disorder using mainly rodents followed by mitochondrial function evaluation, which in general evidenced controversial data. So, we considered the efforts and limitations in this research field and we took into account that sample preparation and quality are critical for bioenergetics investigation. For these reasons the aim of the present study was to develop a thorough protocol for adult zebrafish brain-tissue dissociation to evaluate oxygen consumption flux and reach the bioenergetics profile in health and models of epileptic disorder in both, in vitro using pentylenetetrazole (PTZ) and N-methyl-D-Aspartic acid (NMDA), and in vivo after kainic acid (KA)-induced status epilepticus. In conclusion, we verify that fire-polished glass Pasteur pipette is eligible to brain-tissue dissociation and to study mitochondrial function and dysfunction in adult zebrafish. The results give evidence for large effect size in increase of coupling efficiency respiration (p/O) correlated to treatment with PTZ and spare respiratory capacity (SRC) in KA-induced model indicating oxidative phosphorylation (OXPHOS) variable alterations. Further investigation is needed in order to clarify the bioenergetics role as well as other mitochondrial functions in epilepsy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2021.147498DOI Listing

Publication Analysis

Top Keywords

adult zebrafish
12
brain-tissue dissociation
12
mitochondrial function
12
zebrafish brain-tissue
8
function dysfunction
8
models epileptic
8
epileptic disorder
8
optimized method
4
method adult
4
dissociation allows
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!