Cardiolipins (CL) are a class of lipids involved in the structural organization of membranes, enzyme functioning, and osmoregulation. Biosynthesis of CLs has been studied in eukaryotes and bacteria, but has been barely explored in archaea. Unlike the common fatty acyl chain-based ester phospholipids, archaeal membranes are made up of the structurally different isoprenoid-based ether phospholipids, possibly involving a different cardiolipin biosynthesis mechanism. Here, we identified a phospholipase D motif-containing cardiolipin synthase (MhCls) from the methanogen Methanospirillum hungatei. The enzyme was overexpressed in Escherichia coli, purified, and its activity was characterized by LC-MS analysis of substrates/products. MhCls utilizes two archaetidylglycerol (AG) molecules in a transesterification reaction to synthesize glycerol-di-archaetidyl-cardiolipin (Gro-DACL) and glycerol. The enzyme is nonselective to the stereochemistry of the glycerol backbone and the nature of the lipid tail, as it also accepts phosphatidylglycerol (PG) to generate glycerol-di-phosphatidyl-cardiolipin (Gro-DPCL). Remarkably, in the presence of AG and PG, MhCls formed glycerol-archaetidyl-phosphatidyl-cardiolipin (Gro-APCL), an archaeal-bacterial hybrid cardiolipin species that so far has not been observed in nature. Due to the reversibility of the transesterification, in the presence of glycerol, Gro-DPCL can be converted back into two PG molecules. In the presence of other compounds that contain primary hydroxyl groups (e.g., alcohols, water, sugars), various natural and unique unnatural phospholipid species could be synthesized, including multiple di-phosphatidyl-cardiolipin species. Moreover, MhCls can utilize a glycolipid in the presence of phosphatidylglycerol to form a glycosyl-mono-phosphatidyl-cardiolipin species, emphasizing the promiscuity of this cardiolipin synthase that could be of interest for bio-catalytic purposes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8141893 | PMC |
http://dx.doi.org/10.1016/j.jbc.2021.100691 | DOI Listing |
Sci Adv
January 2025
Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
JCI Insight
November 2024
Department of Medicine, Division of Infectious Diseases, Houston Methodist Hospital, Texas, USA.
Daptomycin is a last-resort lipopeptide antibiotic that disrupts cell membrane (CM) and peptidoglycan homeostasis. Enterococcus faecalis has developed a sophisticated mechanism to avoid daptomycin killing by redistributing CM anionic phospholipids away from the septum. The CM changes are orchestrated by a 3-component regulatory system, designated LiaFSR, with a possible contribution of cardiolipin synthase (Cls).
View Article and Find Full Text PDFPlants (Basel)
September 2024
National Key Laboratory of Wheat Improvement, College of Plant Protection, Shandong Agricultural University, Taian 271018, China.
Small non-coding RNAs (sRNAs) are pivotal post-transcriptional regulatory factors influencing biological activity. Studies on the rice bacterial blight pathogen pathovar strain PXO99, previously identified a virulence-associated sRNA, trans3287. A mutant strain lacking this sRNA, named SK01, resulted in markedly diminished virulence towards rice.
View Article and Find Full Text PDFJ Biol Chem
October 2024
Department of Molecular and Cellular Biology, University of Connecticut, Storrs, Connecticut, USA. Electronic address:
Mitochondria are central to cellular metabolism; hence, their dysfunction contributes to a wide array of human diseases. Cardiolipin, the signature phospholipid of the mitochondrion, affects proper cristae morphology, bioenergetic functions, and metabolic reactions carried out in mitochondrial membranes. To match tissue-specific metabolic demands, cardiolipin typically undergoes an acyl tail remodeling process with the final step carried out by the phospholipid-lysophospholipid transacylase tafazzin.
View Article and Find Full Text PDFAdv Sci (Weinh)
October 2024
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China.
Regulating cardiolipin to maintain mitochondrial homeostasis is a promising strategy for addressing Parkinson's disease (PD). Through a comprehensive screening and validation process involving multiple models, ginsenoside Rg3 (Rg3) as a compound capable of enhancing cardiolipin levels is identified. This augmentation in cardiolipin levels fosters mitochondrial homeostasis by bolstering mitochondrial unfolded protein response, promoting mitophagy, and enhancing mitochondrial oxidative phosphorylation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!