While microorganisms are recognized for driving belowground processes that influence the productivity and fitness of plant populations, the vast majority of bacteria and fungi in soil belong to a seed bank consisting of dormant individuals. However, plant performance may be affected by microbial dormancy through its effects on the activity, abundance, and diversity of soil microorganisms. To test how microbial seed banks influence plant-soil interactions, we purified recombinant resuscitation promoting factor (Rpf), a bacterial protein that terminates dormancy. In a factorially designed experiment, we then applied the Rpf to soil containing field mustard (Brassica rapa), an agronomically important plant species. Plant biomass was ~33% lower in the Rpf treatment compared to plants grown with an unmanipulated microbial seed bank. In addition, Rpf reduced soil respiration, decreased bacterial abundance, and increased fungal abundance. These effects of Rpf on plant performance were accompanied by shifts in bacterial community composition, which may have diluted mutualists or resuscitated pathogens. Our findings suggest that changes in microbial seed banks may influence the magnitude and direction of plant-soil feedbacks in ways that affect above- and belowground biodiversity and function.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mec.15932DOI Listing

Publication Analysis

Top Keywords

microbial seed
16
seed bank
12
plant-soil interactions
8
plant performance
8
seed banks
8
banks influence
8
seed
5
plant
5
rpf
5
resuscitation microbial
4

Similar Publications

Sequence alignment is foundational to many bioinformatic analyses. Many aligners start by splitting sequences into contiguous, fixed-length seeds, called k-mers. Alignment is faster with longer, unique seeds, but more accurate with shorter seeds avoiding mutations.

View Article and Find Full Text PDF

Sustainable management of textile industrial wastewater is one of the severe challenges in the current regime. It has been reported that each year huge amount of textile industry discharge especially the dye released into the environment without pre-treatment that adversely affect the human health and plant productivity. In the present study, different bacterial isolates had been isolated from the industrial effluents and investigated for their bioremediation potential against the malachite green (MG) dye, a major pollutant of textile industries.

View Article and Find Full Text PDF

With climate change, the frequency of regions experiencing water scarcity is increasing annually, posing a significant challenge to crop yield. Barley, a staple crop consumed and cultivated globally, is particularly susceptible to the detrimental effects of drought stress, leading to reduced yield production. Water scarcity adversely affects multiple aspects of barley growth, including seed germination, biomass production, shoot and root characteristics, water and osmotic status, photosynthesis, and induces oxidative stress, resulting in considerable losses in grain yield and its components.

View Article and Find Full Text PDF

The minimal sampling effort required to report the microbiome composition of insect surveyed in natural environment is often based on empirical or logistical constraints. This question was addressed with the white pine cone beetle, (Schwarz), a devastating insect pest of seed orchards. It attacks and stop the growth of the cones within which it will spend its life, on the ground.

View Article and Find Full Text PDF

Feedlot cattle may be subjected to digestive disorders, including ruminal acidosis, due to high concentration of grain in their diet. Therefore, novel feeding strategies are required to maximize animal performance and mitigate economic losses in the operation. This study employed a two-period crossover design to assess the effect of direct ruminal administration of native rumen microorganisms (NRM) inoculation on cattle that underwent a high-grain challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!