Cell transplants are being developed for patients with Parkinson disease (PD) who have insufficient benefit with standard medical treatment. We describe the clinical features of five patients who developed persistent dyskinesias after fetal dopaminergic tissue transplantation. All had levodopa-induced dyskinesias preoperatively. We implanted fetal mesencephalic dopaminergic tissue into the putamina bilaterally in 34 patients with advanced PD. They were not immunosuppressed. Five of 34 patients (15%) developed troublesome choreic or dystonic dyskinesias that persisted despite lowering or discontinuing medications. Attempts to treat the involuntary movements with amantadine, clozapine, anticholinergics, dopamine depletors and other medicines had limited success. Metyrosine eliminated dyskinesias but led to the parkinsonian "off" state. Increasing the dose of levodopa worsened the dyskinesias. Three patients required placement of pallidal stimulators, bilaterally in two and unilaterally in one patient who had only contralateral dyskinesias. The two with the bilateral stimulators had improvement in dyskinesias. The patient with the unilateral pallidal stimulator had a substantial reduction of the dyskinesias, but attempts to treat residual "off" symptoms with levodopa were limited by worsening dyskinesias. Although the number of patients developing these persistent dyskinesias was small, these five patients had dramatic improvement after transplant. As a group, they had milder Parkinson signs at baseline and improved to the point of having minimal parkinsonism, with reduction or elimination of levodopa therapy prior to developing persistent dyskinesias. These involuntary movements establish the principle that fetal dopaminergic tissue transplants can mimic the effects of levodopa, not only in reducing bradykinesia, but also in provoking dyskinesias.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8065148PMC
http://dx.doi.org/10.1038/s41531-021-00183-wDOI Listing

Publication Analysis

Top Keywords

persistent dyskinesias
16
dyskinesias
12
dopaminergic tissue
12
patients
8
tissue transplantation
8
parkinson disease
8
fetal dopaminergic
8
attempts treat
8
involuntary movements
8
developing persistent
8

Similar Publications

Background: Bilateral deep brain stimulation (DBS) of subthalamic nucleus (STN) has demonstrated efficacy for ameliorating medication-refractory isolated dystonia. Nonetheless, the paucity of evidence regarding its long-term impact on quality-of-life (QoL) necessitates further investigation.

Objectives: This study aimed to elucidate the longitudinal effects of chronic STN stimulation on QoL in patients suffering from isolated dystonia.

View Article and Find Full Text PDF

The cGAS-STING, p38 MAPK, and p53 pathways link genome instability to accelerated cellular senescence in ATM-deficient murine lung fibroblasts.

Proc Natl Acad Sci U S A

January 2025

Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv 69978, Israel.

Ataxia-telangiectasia (A-T) is a pleiotropic genome instability syndrome resulting from the loss of the homeostatic protein kinase ATM. The complex phenotype of A-T includes progressive cerebellar degeneration, immunodeficiency, gonadal atrophy, interstitial lung disease, cancer predisposition, endocrine abnormalities, chromosomal instability, radiosensitivity, and segmental premature aging. Cultured skin fibroblasts from A-T patients exhibit premature senescence, highlighting the association between genome instability, cellular senescence, and aging.

View Article and Find Full Text PDF

Background: Glucose transporter 1 deficiency syndrome (Glut1DS) was initially reported by De Vivo and colleagues in 1991. This disease arises from mutations in the SLC2A1 and presents with a broad clinical spectrum. It is a treatable neuro-metabolic condition, where prompt diagnosis and initiation of ketogenic dietary therapy can markedly enhance the prognosis.

View Article and Find Full Text PDF

Background: Long-term use of levodopa, a metabolic precursor of dopamine (DA) for alleviation of motor symptoms in Parkinson's disease (PD), can cause a serious side effect known as levodopa-induced dyskinesia (LID). With the development of LID, high-frequency gamma oscillations (~100 Hz) are registered in the motor cortex (MCx) in patients with PD and rats with experimental PD. Studying alterations in the activity within major components of motor networks during transition from levodopa-off state to dyskinesia can provide useful information about their contribution to the development of abnormal gamma oscillations and LID.

View Article and Find Full Text PDF

Introduction: Very rarely, adult NMDAR antibody-associated encephalitis (NMDAR-E) leads to persistent cerebellar atrophy and ataxia. Transient cerebellar ataxia is common in pediatric NMDAR-E. Immune-mediated cerebellar ataxia may be associated with myelin oligodendrocyte glycoprotein (MOG), aquaporin-4 (AQP-4), kelch-like family member 11 (KLHL11), and glutamate kainate receptor subunit 2 (GluK2) antibodies, all of which may co-occur in NMDAR-E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!