The yeast diadenosine and diphosphoinositol polyphosphate phosphohydrolase DDP1 is a Nudix enzyme with pyrophosphatase activity on diphosphoinositides, dinucleotides, and polyphosphates. These substrates bind to diverse protein targets and participate in signaling and metabolism, being essential for energy and phosphate homeostasis, ATPase pump regulation, or protein phosphorylation. An exhaustive structural study of DDP1 in complex with multiple ligands related to its three diverse substrate classes is reported. This allowed full characterization of the DDP1 active site depicting the molecular basis for endowing multisubstrate abilities to a Nudix enzyme, driven by phosphate anchoring following a defined path. This study, combined with multiple enzyme variants, reveals the different substrate binding modes, preferences, and selection. Our findings expand current knowledge on this important structural superfamily with implications extending beyond inositide research. This work represents a valuable tool for inhibitor/substrate design for DDP1 and orthologs as potential targets to address fungal infections and other health concerns.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8064635 | PMC |
http://dx.doi.org/10.1126/sciadv.abf6744 | DOI Listing |
Plant Physiol
December 2024
Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
Inositol pyrophosphates are eukaryotic signaling molecules that have been recently identified as key regulators of plant phosphate sensing and homeostasis. Given the importance of phosphate to current and future agronomic practices, we sought to design plants, which could be used to sequester phosphate, as a step in a phytoremediation strategy. To achieve this, we expressed diadenosine and diphosphoinositol polyphosphate phosphohydrolase (DDP1), a yeast (Saccharomyces cerevisiae) enzyme demonstrated to hydrolyze inositol pyrophosphates, in Arabidopsis thaliana and pennycress (Thlaspi arvense), a spring annual cover crop with emerging importance as a biofuel crop.
View Article and Find Full Text PDFSci Adv
April 2021
Department of Crystallography and Structural Biology, Institute of Physical-Chemistry Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain.
The yeast diadenosine and diphosphoinositol polyphosphate phosphohydrolase DDP1 is a Nudix enzyme with pyrophosphatase activity on diphosphoinositides, dinucleotides, and polyphosphates. These substrates bind to diverse protein targets and participate in signaling and metabolism, being essential for energy and phosphate homeostasis, ATPase pump regulation, or protein phosphorylation. An exhaustive structural study of DDP1 in complex with multiple ligands related to its three diverse substrate classes is reported.
View Article and Find Full Text PDFmBio
August 2020
Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
The facultative intracellular pathogen , like many related , uses the nucleotide second messenger cyclic di-AMP (c-di-AMP) to adapt to changes in nutrient availability, osmotic stress, and the presence of cell wall-acting antibiotics. In rich medium, c-di-AMP is essential; however, mutations in , the gene encoding c-di-AMP binding protein B, suppress essentiality. In this study, we identified that the reason for -dependent essentiality is through induction of the stringent response by RelA.
View Article and Find Full Text PDFPLoS Pathog
June 2017
Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany.
5'-3' decay is the major mRNA decay pathway in many eukaryotes, including trypanosomes. After deadenylation, mRNAs are decapped by the nudix hydrolase DCP2 of the decapping complex and finally degraded by the 5'-3' exoribonuclease. Uniquely, trypanosomes lack homologues to all subunits of the decapping complex, while deadenylation and 5'-3' degradation are conserved.
View Article and Find Full Text PDFBiochimie
June 2016
Department of Chemistry and Biochemistry, The City College of New York, The City University, New York, NY 10031, USA; Biochemistry Ph.D. Program, The City University of New York Graduate Center, New York, NY 10016, USA; Chemistry Ph.D. Program, The City University of New York Graduate Center, New York, NY 10016, USA. Electronic address:
RNA Polymerase II transcribes beyond what later becomes the 3' end of a mature messenger RNA (mRNA). The formation of most mRNA 3' ends results from pre-mRNA cleavage followed by polyadenylation. In vitro studies have shown that low concentrations of ATP stimulate the 3' cleavage reaction while high concentrations inhibit it, but the origin of these ATP effects is unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!