Background/aim: c-Met (mesenchymal-epithelial transition factor) facilitates cancer progression and is recognized as a promising drug target. The molecular target of gigantol from Dendrobium draconis in suppressing cancer metastasis is largely unknown.
Materials And Methods: Proteins affected by gigantol treatment were subjected to proteomic and bioinformatic analysis. Protein-Protein interaction (PPI) networks were constructed by the Search Tool for the Retrieval of Interacting Genes (STRING). The Kyoto Encyclopedia of Genes and Genomes (KEGG) database and hub gene were used to enrich the dominant pathways. Western blot analysis and immunofluorescence were used to validate the effect of gigantol on the target protein and signaling.
Results: Gigantol down-regulates 41 adhesion proteins and 39-migratory proteins, while it up-regulates 30 adhesion-related proteins and 22 proteins controlling cell migration. The key components of our constructed PPI network comprised 41 proteins of cell adhesion enriched in 40 nodes with 25 edges, 39 proteins of cell migration enriched in 39 nodes with 76 edges in down-regulated proteins, 30 proteins of cell adhesion enriched in 30 nodes with 21 edges, and 22 proteins of cell migration enriched in 22 nodes with 22 edges in up-regulated protein. c-Met was identified as a central protein of the PPI network in the largest degree. KEGG mapper further suggested that c-Met, PI3K, and AKT were the regulatory proteins affected by gigantol. To confirm, the effects of gigantol on c-Met, the p-PI3K, PI3K, p-AKT, and AKT proteins were investigated by western blotting and the results showed a consistent effect of gigantol in the suppression of the c-Met/PI3K/AKT signal. Next, immunofluorescence showed a dramatic decrease in c-Met, PI3K and AKT activation in response to gigantol.
Conclusion: c-Met is an important target of gigantol treatment in lung cancer cells. Gigantol suppresses metastasis-related cell motility through decreasing c-Met resulting in PI3K/AKT signaling disruption.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8126329 | PMC |
http://dx.doi.org/10.21873/cgp.20257 | DOI Listing |
Elife
January 2025
Department of Neurology, Baylor College of Medicine, Houston, United States.
variants in children with neurodevelopmental impairment are difficult to assess due to their heterogeneity and unclear pathogenic mechanisms. We describe a child with neonatal-onset epilepsy, developmental impairment of intermediate severity, and G256W heterozygosity. Analyzing prior KCNQ2 channel cryoelectron microscopy models revealed G256 as a node of an arch-shaped non-covalent bond network linking S5, the pore turret, and the ion path.
View Article and Find Full Text PDFAntioxid Redox Signal
January 2025
Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
Thyroid hormones (TH) are major regulators of cell differentiation, growth, and metabolic rate. TH synthesis in the thyroid gland requires high amounts of HO to oxidize iodide for the iodination of thyroglobulin (TG). Retinol Saturase (RetSat) is an oxidoreductase implicated in dihydroretinol formation and cellular sensitivity toward peroxides and ferroptosis.
View Article and Find Full Text PDFHepatol Commun
November 2024
Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
Background: Overdose of acetaminophen (APAP), a commonly used antipyretic analgesic, can lead to severe liver injury and failure. Current treatments are only effective in the early stages of APAP-induced acute liver injury (ALI). Therefore, a detailed examination of the mechanisms involved in liver repair following APAP-induced ALI could provide valuable insights for clinical interventions.
View Article and Find Full Text PDFJ Med Food
January 2025
Department of Food Science & Biotechnology, Sejong University, Seoul, Republic of Korea.
Respiratory tract diseases (RTDs) cause airflow limitations and impaired respiratory function, primarily due to pulmonary inflammation and immune dysfunction. var. Kitamur and (CP) are traditional herbs known for their anti-inflammatory and immune-enhancing properties.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Tissue Culture and Drug Discovery Laboratory, Department of Biotechnology, Anna University, Chennai, 600 025, India.
Multi-targeted therapies are gaining attention in the management of multifactorial diseases due to their poly pharmacology, enhanced potency and reduced toxicity. Metabolic disorders like Type 2 diabetes mellitus (T2DM) and obesity necessitate multi-targeted therapy to improve insulin sensitivity, regulate glucose homeostasis and support weight loss. Medicinal plants rich in bioactive compounds exhibit multi-targetted action with minimal side effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!