FOXP1 syndrome is a neurodevelopmental disorder caused by mutations or deletions that disrupt the forkhead box protein 1 (FOXP1) gene, which encodes a transcription factor important for the early development of many organ systems, including the brain. Numerous clinical studies have elucidated the role of FOXP1 in neurodevelopment and have characterized a phenotype. FOXP1 syndrome is associated with intellectual disability, language deficits, autism spectrum disorder, hypotonia, and congenital anomalies, including mild dysmorphic features, and brain, cardiac, and urogenital abnormalities. Here, we present a review of human studies summarizing the clinical features of individuals with FOXP1 syndrome and enlist a multidisciplinary group of clinicians (pediatrics, genetics, psychiatry, neurology, cardiology, endocrinology, nephrology, and psychology) to provide recommendations for the assessment of FOXP1 syndrome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8066957PMC
http://dx.doi.org/10.1186/s11689-021-09358-1DOI Listing

Publication Analysis

Top Keywords

foxp1 syndrome
20
foxp1
7
syndrome review
4
review literature
4
literature practice
4
practice parameters
4
parameters medical
4
medical assessment
4
assessment monitoring
4
monitoring foxp1
4

Similar Publications

Preeclampsia (PE) is a pregnancy-related disease characterized by vascular endothelial cell injury. This study aimed to investigate the role of methyltransferase-like protein 14 (METTL14) in vascular endothelial cell injury in PE. The PE cell model was established by treating human umbilical vein endothelial cells (HUVECs) with tumor necrosis factor-alpha (TNF-α) in vitro.

View Article and Find Full Text PDF

Objective: To understand the etiological landscape and phenotypic differences between 2 developmental and epileptic encephalopathy (DEE) syndromes: DEE with spike-wave activation in sleep (DEE-SWAS) and epileptic encephalopathy with spike-wave activation in sleep (EE-SWAS).

Methods: All patients fulfilled International League Against Epilepsy (ILAE) DEE-SWAS or EE-SWAS criteria with a Core cohort (n = 91) drawn from our Epilepsy Genetics research program, together with 10 etiologically solved patients referred by collaborators in the Expanded cohort (n = 101). Detailed phenotyping and analysis of molecular genetic results were performed.

View Article and Find Full Text PDF

Background: Recognized as one of the most serious musculoskeletal deformities, occurring in 1-2 per 1000 newborns, 80% of clubfeet are idiopathic while 20% present with associated malformations. The etiopathogenesis of clubfoot is described as multifactorial, including both genetic and environmental risk factors. The aim of this study was to analyze possible genetic causes of isolated and syndromic clubfoot in Serbian children, as well as to correlate clinical and genetic characteristics that would provide insight into clubfoot etiopathogenesis and possibly contribute to global knowledge about clinical features of different genetically defined disorders.

View Article and Find Full Text PDF

Haploinsufficiency of FOXP1 gene is responsible for a neurodevelopmental disorder presenting with intellectual disability (ID), autism spectrum disorder (ASD), hypotonia, mild dysmorphic features, and multiple congenital anomalies. Joint contractures are not listed as a major feature of FOXP1-related disorder. We report five unrelated individuals, each harboring likely gene disruptive de novo FOXP1 variants or whole gene microdeletion, who showed multiple joint contractures affecting at least two proximal and/or distal joints.

View Article and Find Full Text PDF

Cell type specific roles of FOXP1 during early neocortical murine development.

bioRxiv

June 2024

Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.

Cortical development is a tightly controlled process and any deviation during development may increase the susceptibility to neurodevelopmental disorders, such as autism spectrum disorders (ASD). Numerous studies identified mutations in , a transcription factor enriched in the neocortex, as causal for ASD and FOXP1 syndrome. Our group has shown that deletion in the mouse cortex leads to overall reduced cortex thickness, alterations in cortical lamination, and changes in the relative thickness of cortical layers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!