A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A hybrid model for forecasting of particulate matter concentrations based on multiscale characterization and machine learning techniques. | LitMetric

Accurate prediction of particulate matter (PM) using time series data is a challenging task. The recent advancements in sensor technology, computing devices, nonlinear computational tools, and machine learning (ML) approaches provide new opportunities for robust prediction of PM concentrations. In this study, we develop a hybrid model for forecasting PM and PM based on the multiscale characterization and ML techniques. At first, we use the empirical mode decomposition (EMD) algorithm for multiscale characterization of PM and PM by decomposing the original time series into numerous intrinsic mode functions (IMFs). Different individual ML algorithms such as random forest (RF), support vector regressor (SVR), k-nearest neighbors (kNN), feed forward neural network (FFNN), and AdaBoost are then used to develop EMD-ML models. The air quality time series data from Masfalah air station Makkah, Saudi Arabia are utilized for validating the EMD-ML models, and results are compared with non-hybrid ML models. The PMs (PM and PM) concentrations data of Dehli, India are also utilized for validating the EMD-ML models. The performance of each model is evaluated using root mean square error (RMSE) and mean absolute error (MAE). The average bias in the predictive model is estimated using mean bias error (MBE). Obtained results reveal that EMD-FFNN model provides the lowest error rate for both PM (RMSE = 12.25 and MAE = 7.43) and PM (RMSE = 4.81 and MAE = 3.02) using Misfalah, Makkah data whereas EMD-kNN model provides the lowest error rate for PM (RMSE = 20.56 and MAE = 12.87) and EMD-AdaBoost provides the lowest error rate for PM (RMSE = 15.29 and MAE = 9.45) using Dehli, India data. The findings also reveal that EMD-ML models can be effectively used in forecasting PM mass concentrations and to develop rapid air quality warning systems.

Download full-text PDF

Source
http://dx.doi.org/10.3934/mbe.2021104DOI Listing

Publication Analysis

Top Keywords

emd-ml models
16
multiscale characterization
12
time series
12
lowest error
12
error rate
12
rate rmse
12
hybrid model
8
model forecasting
8
particulate matter
8
based multiscale
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!